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Abstract. For g a dgla over a field of characteristic zero, the dual of the Hochschild
homology of the universal enveloping algebra of g completes to the Hochschild
homology of the Lie algebra cohomology of g. In this talk we will resolve this
completion discrepancy through considerations of formal algebraic geometry.
This will be an instance of our main result, which is a version of Poincare’ du-
ality for factorization homology as it interacts with Koszul duality in the sense
of formal moduli. This can be interpreted as a duality among certain topological
field theories that exchanges perturbative and non-perturbative.

1. Motivation

This was a chalk talk. The speaker decided not to share his hand-written lecture
notes.

Joint with David Ayala.

Motivation comes from physics. They care about field theories, so in particular
they care about fields (and their duals). Observables are fieldsv, i.e. dualized
fields.

Toy examples: start with an algebraic group M and let fields be G-bundles on M,
i.e. BunG(M). Dualizing is then passage to O(BunG(M)), e.g. the sheaf of global
functions.

Factorization homology began with Costello-Gwilliam, Beilinson-Drinfeld. It’s
supposed to be an algebraic model for observables. For simplicity let’s restrict
to C = Ch⊗. The input is an n-disk algebra (denoted in the previous talk by
Diskn-alg). The output is the chain complex of observables in this theory, denoted∫

M A.

An n-disk algebra has additional symmetries that En-algebras do not. However, for
the examples coming from physics, these symmetries are always there.

Some examples:

0 For n = 1 we have TV =
⊕

i≥0 V⊗i. Construct an action of Top(1) �
Z/2 � 〈σ〉 on this object. This σ acts as the identity on k and V in TV , but
it acts by swapping factors of V⊗2.
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(1) Another good example is loop spaces. These have an n-disk functor given
by the symmetric monoidal functor C∗ΩnX : Diskn → Ch given by C∗(Mapc(−, X)).
So the extra symmetry was always there in Mapc(−, X) all-along.

(2) Commutative algebras provide a class of examples via A ◦ π0 : Diskn →

Fin→ Ch. If you want to augment this then you use Fin∗.

(3) Enveloping algebras of Lie algebras (of which the first example is a special
case). Given a Lie algebra g, we can form CLie

∗ (Ωng) where Ωng ' g[−n].
For n = 1, C∗(Ωg) ' U. When n > 1 this object has a commutative monoid
structure given by Sym(g[1 − n]).

(4) Deformations of all the above also provide examples, i.e. deformations as
En-algebras. This is analogous to deformation quantization.

The toy example O(BunG(M)) is not equivalent to factorization homology with
coefficients in any of the above. Let’s quickly list off factorization homologies of
the above (but not the deformations of them).

(1)
∫

M C∗ΩnX = C∗Mapc(M, X) by non-abelian Poincare Duality

(2)
∫

M A ' M ⊗ A where the tensor is taken as a commutative algebra. This as
discussed in David Ben-Zvi’s talk.

(3)
∫

M CLie
∗ Ωng ' CLie

∗ C∗c(M, g)

None of these give the functor M 7→ O(BunG(M)), because it’s functors on a limit
rather than on a colimit. The issue is that BunG(M) does not satisfy the local-to-
global principle because passage to BunG(M) only remembers M as a space, and
not the algebraic structure of M.

If we adjust our definition of factorization homology to allow non-affine coeffi-
cients then we can better understand this example.

2. Moduli Theoretic Extension of Factorization Homology

Consider the category of n-disk algebras in Ch. There is a functor X to spaces, e.g.
BunG. This is the functor of points approach.

AlgDiskn(Ch) X // Spaces

AlgDiskn(Ch)∫
M
��

oo Spec// Fun(Algcom
Diskn

, S p)op

RKE
uu

Ch

We may then construct

∫
M

X = lim
S pecA→X

∫
M

A
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where the limit is over all A ∈ AlgDiskn/X and X(A) is in Spec A.

We may now realize O(BunG M) as
∫

M BG = Γ(X,
∫

M O) where BG represents
BunG(−). This realization can be done locally and then glued up to a global one
using the scheme or stack structure.

Theorem 2.1. Under the conditions from the previous talk (presentable∞-category
well-behaved with respect to sifted colimits):

intMA //

��

∫ M¬∗ BarnA

P∞
∫

M∗
A

'

99

When is the vertical map an equivalence? Well, we can work out one example right
away.

Let A = FV '
⊕

Con f f r
i (Rn

+) ⊗ΣioTop(n) V⊗i. Then we can compute both sides of
the map in question.

(1)
∫

M∗
FV =

⊕
Con f f r

i (M∗) ⊗ΣioTop(n) V⊗i

(2) P∞
∫

M∗
FV �

∏
Con f f r

i (M∗) ⊗ΣioTop(n) V⊗i

Corollary 2.2. If V is connected then this map
∫

M∗
FV → P∞

∫
M∗
FV is an equiv-

alence.

Similarly, if the augmentation ideal A is connected then
∫

M∗
A → P∞

∫
M∗

A is an
equivalence.

However, when A is not connected this map need not be an equivalence. Connec-
tivity is determined by the fiber of the augmentation.

We really want this map to be an equivalence so that we understand what’s going
on (especially the filtration). One way to force this map to be an equivalence is to
apply completion everywhere. But that’s really an extreme measure. In the next
section a more careful approach is taken.

3.

Features of Poincaré/Koszul Duality:

(1) The Poincaré/Koszul Duality map is not an equivalence generically for
non-connected A, i.e. it has stuff in negative homology degrees.

(2) There exists a moduli-theoretic generalization of factorization homology,
which was necessary to account for the toy example. Taking cohomology
accounts for the negative homology of the dual.
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Idea: given A, is there a moduli-functor of n-disk algebras related to the dual of A
to account for the connection between these two features?

Define DA = (
∫

(Rn)+ A)v. Then we are asking if there is some X such that O(X) =

DA.

The answer is yes, thanks to the Maurer-Cartan functor. The following definition
is considered by Quillen (under the name ‘twisting functions’).

Definition 3.1. Let g be a Lie algebra. Define MCg : Artin→ Spaces via MCg(R) =

MapLie(T∗R[−1], g).

More general definitions are considered by Lurie (for En-algebras), Deligne, Kont-
sevich, and Drinfeld. We must first fix some notation.

Let k be a field. Let Artinn ⊂ Algconn
Diskn,+

/k be generated by finite sequences of
square zero extensions by finite Top(n)-modules.

Remark: This is motivated classically by taking finitely many extensions of k[ε]/(ε2).

Definition 3.2. Consider A ∈ Diskn,+-alg. Define MCA : Artinn → Spaces by
R 7→ Map(DR, A).

Lemma 3.3. Global functions does indeed give the Koszul dual: O(MCA) = DA.

AlgDiskn,+

MC //

bbD %%

Modulin
O

yy
Algop

Diskn,+

Here O(X) = lim R over all R ∈ Artinn /X. This is a homotopy limit. Deriving it
recovers the usual definition ofO(X). Similarly one can define

∫
M∗

X as a homotopy
limit of

∫
M∗

R, or (equivalently)
∫

M∗
X may be defined locally as Γ(X,

∫
M∗
O).

Theorem 3.4 (AF). Let A be an augmented n-disk algebra over some field k. Let
M be a zero pointed n-manifold. Then

(∫
M∗

A
)v

'

∫
M¬∗

MCA

Punchline: the failure in the right-hand side of the moduli problem MCA to be
affine sits inside the failure of the Goodwillie tower to converge in the left-hand
side.

Example: Let C be an n-disk coalgebra such that Cv is an n-disk algebra. Then∫ M
C ' (

∫
M∗

Cv)v.
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4. A word about the proof of this theorem

Sadly, when you do D twice you don’t always get back to where you started, but
sometimes you do.

The essential ingredient is that the dual DA of an Artin algebra (i.e. an object of
Artinop

n ) gives you a finitely presented n-disk algebra over A satisfying −n cocon-
nectivity. Applying D twice does return you to where you started, i.e.

D : Artinop
n ↔

' FPres≤−n
n : D

This equivalence is proven by a computation for FV where V is−n-coconnected:

∫
M∗
FV ' P∞

∫
M∗

A

where the left hand side has layers Con f f r
i (M∗) ⊗ Σi o Top(n)V⊗i. These satisfy

connectivity for n + (n − 1)(i − 2) − in. Now take the limit as n→ ∞ and you have
the connectivity required to conclude the statement.

So now (
∫

M∗
R)v '

∫
M¬∗
DR. It is now easy to see where this fails in general.

We use this statement to prove the main theorem. Resolve A by finitely presented
n-coconnective free algebras and apply formalism.

5. A Concrete Example

Let n = 1 and let A = Ug be the universal enveloping algebra for a Lie algebra g.
When g is connected:

(∫
S 1

Ug
)v

' (HC∗Ug)v

The reason is that when g is connected (i.e. there is nothing in degree 0) the left
hand side can be realized as

∫
S 1 C∗g, which is equivalent to HC∗C∗g.

Very important examples (e.g. S L(Z)) are excluded by the connectivity hypothe-
sis.

The work in this talk lets you still say something when g is not connected, i.e. you
can say

(∫
S 1

Ug
)v

'

(∫
S 1

MCg
)
' HC∗(MCg

Another example:
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A = C∗ΩX∫
S 1 C∗ΩX = C∗LX when X is connected.

When X is simply connected you can plug chains-on-X into the main theorem and
conclude that Goodwillie calculus gives you an explicit formula for the factoriza-
tion homology.
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