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Abstract. One can phrase interesting objects in terms of fixed points of group
actions. For example, class numbers of quadratic extensions of Q can be ex-
pressed with fixed points of actions on modular curves. Derived functors are
frequently better behaved than their non-derived versions, so it is useful to con-
sider the associated derived functor, called the homotopy fixed points. Sullivan’s
conjecture is an equivalence between appropriately completed spaces of fixed
points and homotopy fixed points for finite p-groups. It was proven indepen-
dently by H. Miller, G. Carlsson, and J. Lannes. This talk will present Sullivan’s
conjecture and its solutions, and discuss analogues for absolute Galois groups
conjectured by Grothendieck.

This was a chalk talk.

Let G be a finite group, X some set, abelian group, or topological space on which
G acts.

XG = {x | gx = x∀ g ∈ G} is the set of fixed points.

Example: let N be a positive integer. Define X0(N) to be the moduli space of (E, φ)
where E is a (generalized) ellliptic curve and φ : E → E′ is an isogeny of degree N.
A group action of Z/2 = 〈ωN〉 is given by the Atkin-Lehner involution ωN , where
ωN(E, φ) = (E/ ker(φ), E/ ker(φ) → E/E[N]) where E[N] is the N-torsion of E.
That map is degree N because you’ve already divided out by N and N2/N = N.
The following is a consequence of work of Ogg:

Theorem 0.1. Fix N > 4. Then

|XG | =

h(−N) + h(−4N) if N ≡ 3 mod 4
h(−4N) otherwise

where h(−N) is the order of the class group of Q(
√
−N)

The class group equals the narrow class group for quadratic imaginary extensions.
Now define h(N) to be the order of the narrow class group of Q[

√
N]. This doesn’t

affect the statement of the theorem above.
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Proof Sketch. Suppose (E, φ) ∈ X0(N)ωN . Elliptic curves correspond to lattices in
C so H1(E,Z) = Λ ⊂ C.

(E, φ) corresponds to the pair (Λ,Λ2) where Λ is the lattice for E, and the kernel
of φ determines a larger lattice Λ2 where Λ ⊂ Λ2 has index N.

ωN takes this pair to (Λ2, 1/NΛ) = (aΛ, aΛ2) where 1/NΛ1 = aΛ2 = a2Λ1 implies
a2N ∈ {±1,±i,±ζ3,±ζ

2
3 }.

Now, Z[a] is a lattice in C so the only b for which b = a2N is b = −1 (argue by
contradiction, using the fact that extensions can’t be too big).

This implies H1(E,Z) is a module over Z[
√
−N].

�

This gives us some sense of why we might expect to see class groups arising in the
study of X0(N).

There is an action of Gal(C/R) on X0(N)/ωN , thus we may consider (X0(N)/ωN)(R)-
points in X0(N).

Theorem 0.2 (Another Theorem of Ogg). π0(X0(N)/ωN(R)) = 1
2 (h(4N) + 1)

when N is 2 or 3 mod 4 and square free.

Note that h(−N) gets switched h(N). This has to do with solving ωN(E, φ) =

(E, φ).

There is a conjecture of Gauss from 1801 that there are infinitely many Q(
√

N)
with class number 1. This is still open.

1. Sullivan Conjecture

In the previous section, fixed points were used. Now we’ll use homotopy fixed
points. Let EG be a contractible space with a free G-action. Then map(EG, X) has
an action of G given by (g · f )(x) = g f g−1(x) for all x ∈ EG.

The homotopy fixed points XhG of X are the fixed points map(EG, X)G. By analogy,
map(∗, X)G = XG. The G-map EG → ∗ induces a map XG → XhG via mapping
spaces.

The homotopy fixed point spectral sequence is Hi(G, π jX) ⇒ π j−iXhG. It’s really
a bunch of spectral sequences in one because of different path components. The
differential dr goes left r and up r − 1.

Example: X = S 2, Z/2 acts on S 2 via (x, y, z) 7→ (x, y,−z).

n = 2 n = 3 n = 4 n = 5 n = 6 n = 7
πn(S 2) Z Z Z/2 Z/2 Z/12 Z/2
Z/2 − act (−) ∗ (−1) ???
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The unknown action can be worked out via Hilton-Milnor on the Hopf element.
You push forward the ‘multiplication by −1’ action and see that a∗η = aη+

(
a
2

)
2η =

aη+ a(a−1)η = a2η. Thus, the action is given by multiplication by (−1)2 = 1. The
action for n = 4 is also trivial.

Denote by Z(1) the Z in n = 2, and by Z(2) the Z in n = 3. Then Hi(Z/2,Z(1)) is
Z/2 for i odd and 0 otherwise, while Hi(Z/2,Z(2)) is Z/2 for i even and positive,
and 0 otherwise. Finally, H1(Z/2,Z/2) = Z/2. So the E2-page is a bunch of Z/2’s
convergint to a filtration of π∗XhG. Meanwhile XG = S 1.

Sullivan’s Conjecture (proven by Gunnar Carlsson, Haynes Miller, and Jean Lannes
all independently) is saying the homotopy fixed points are not far off from the fixed
points. In this case it’s saying that the homotopy fixed point spectral sequence is
converging to the 2-completion, i.e. the 2-adics Z2 = π1XhG. You are filtering
Z2 = π1XhG so that successive filtration quotients are Z/2 and this is what is show-
ing up in this spectral sequence.

This is all motivation for the Bousfield-Kan Spectral Sequence.

The punchline is that if X is simply connected then X → X∧p (the p-completion
of X) is terminal among H∗(−,Fp)-equivalences. This is saying it’s a localization
map.

2. Sullivan’s Conjecture

Theorem 2.1 (Sullivan’s Conjecture, proven by Miller, Carlsson, Lannes). Let G
be a finite p-group, X a finite G CW-complex, (XG)∧p → (X∧p )hG is an equivalence.

Example: let X be an algebraic curve over R whose Euler-characteristic χ(X(C)) <
0, let b ∈ X(R), then π0(X(R)) � π0X(C)hGal(C/R) � H1(Gal(C/R), π1X(C)).

Here π1X(C) need not be abelian and the action may not be trivial.

Non-example: X = S n with a trivial Z/2 action. Then Sym∞(X) = K(Z, n) with
a trivial action. So (Sym∞ X)G = K(Z, n) but the homotopy fixed points are very
different. We may compute them via a spectral sequence:

H1(Z/2,Z)⇒ πn−1(Sym∞ X)hG

This demonstrates that πn−i(Sym∞(X)hG) � Hi(Z/2,Z) is non-trivial for many
i.

Another non-example is G = Z, X = R, and G acting by translation. Then XhG '

∗.

The main result of this talk (answering a recent question of Haynes Miller) fol-
lows. Let k/Q finite field extension and X a proper smooth curve. So by Falting’s
Theorem X(k) is a finite set.
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Proposition 2.2. The section conjecture is equivalent to the statement that X(k)
∼
→

EtXhGal(k/k)
k

.

This is an enrichment of the section conjecture, which is a statement about π0.

Proof goes by reducing to an abelian case then doing a spectral sequence compu-
tation of the sort discussed earlier.
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