CO-SEGAL ALGEBRAS AND DELIGNES CONJECTURE

HUGO BACARD

This was a chalk talk. The speaker decided not to share his hand-written lecture notes.

This is following earlier work of Kock-Toën.

1. BACKGROUND

In the classical setting you fix a commutative ring *K*. For simplicity let's think of it as a field. Let *A* be a *K*-algebra with multiplication $\mu : A \otimes_K A \to A$.

Define the Hochschild complex with coefficients in $A C^0(A, A) \rightarrow C^1(A, A) \rightarrow \cdots \rightarrow C^h(A, A)$ where each $C^n(A, A) = \operatorname{Hom}_K(A^{\otimes n}, A)$. This is the *n*th space of the endomorphism operad End_A , so it's containing the information of the algebraic structure of A.

Define the Hochschild homology HH(A) to be the cohomology of this complex. This depends on μ .

Remark: there is a complex BA called the bar complex of A

 $[\dots \to A^{\otimes n} = A \otimes_K A \otimes_K \dots \otimes_K A \to \dots \to A \otimes A \otimes A \to A \otimes A] \xrightarrow{\mu} A$

So $BA_i = A \otimes A^{\otimes i} \otimes A = F(A^{\otimes i})$ where $F : K \text{-mod} \to \text{Bimod}_A$ is left adjoint to the forgetful functor *U*. This adjunction gives $\text{Hom}_{K-mod}(N, A) \simeq \text{Hom}_{BiMod_A}(F(N), A)$.

Taking $N = A^{\otimes i}$ yields $\operatorname{Hom}_{K}(A^{\otimes i}, A) = \operatorname{Hom}_{BiMod}(F(A^{\otimes i}, A))$. In this light, the Hochschild complex is a Hom complex $\operatorname{Hom}(BA, A)$ between two chain complexes of *A*-bimodules where we view *A* concentrated in degree 0.

If A is free or projective over K then BA is a resolution of A by bimodules, so $HH(A) = \underline{RHom}(A, A) = Ext(A, A)$.

2. Deligne's Conjecture

Deligne was hoping HH(A) was something like an algebra over the 2-disk operad, i.e. if you draw a disk with two disks inside then this acts by taking $HH(A) \times$ $HH(A) \rightarrow HH(A)$, where each of the two disks corresponds to a different multiplicative structure on the corresponding HH(A). So we need to make sense of these different algebra structures on HH(A).

Date: April 08, 2014. Prepared by David White, Wesleyan University.

HUGO BACARD

Theorem 2.1 (Kock-Toën). *Suppose A is a simplicial algebra. Then the simplicial derived Hom space REnd*(*A*) *is a simplicial 2-monoid.*

A simplicial 2-monoid has two compatible algebraic structures.

The non-derived version of the theorem looks at a monoidal category $(\mathcal{M}, \otimes, I)$ and outputs $(BiMod_A, \otimes_A, A)$. Under this assignment the right derived functor of Hom(I, I) is taken to HH(A).

Hom(*I*, *I*) has two multiplicative structures:

- (1) Given by composition.
- (2) Given by $\operatorname{Hom}(I, I) \otimes \operatorname{Hom}(I, I) \to \operatorname{Hom}(I^2, I^2) \cong \operatorname{Hom}(I^2, I^2)$

A classical result of Eckmann-Hilton says that when you have two multiplications which are compatible then they provide a commutative structure on Hom(I, I).

Let \mathcal{M} be a symmetric monoidal model category (more generally, a monoidal model category where $\text{Hom}_{\ell} \simeq \text{Hom}_{r}$ in the notation of Hovey's book). Then one can compute $REnd(I) = \underline{\text{Hom}}(QI, RI)$ where QI is the cofibrant replacement of I and RI is the fibrant replacement of I.

We think of REnd(I) as the Hochschild cohomology. These model category theoretic considerations provide $REnd(I) \simeq \underline{Hom}(E, E)$ and this picks out the canonical multiplication $Hom(E, E) \otimes Hom(E, E) \rightarrow Hom(E, E)$.

Now consider the multiplicative structure where you take two endomorphisms f and g to $f \otimes g$. In order for this to give a multiplication, we need a way to get from $\operatorname{Hom}(E^2, E^2)$ to $\operatorname{Hom}(E, E)$. The way to do this is via a zig-zag $\operatorname{Hom}(E^2, E^2) \to \operatorname{Hom}(E^2, E) \stackrel{\sim}{\leftarrow} \operatorname{Hom}(E, E)$. So the multiplication is given by

 $\operatorname{Hom}(E, E) \otimes \operatorname{Hom}(E, E) \to \operatorname{Hom}(E^2, E) \stackrel{\sim}{\leftarrow} \operatorname{Hom}(E, E)$ i.e. $X(1) \otimes X(1) \to X(2) \leftarrow X(1)$

This is precisely the data of a coSegal algebra.

3. CO-SEGAL ALGEBRAS

Let \mathcal{M} be a monoidal category with a subcategory \mathcal{W} of weak equivalences. A *co-Segal algebra* X is a lax-monoidal functor $X : (\Delta_{epi}^+, +, 0)^{op} \to (\mathcal{M}, \otimes, I)$ such that the underlying functor $X : (\Delta_{epi}^+)^{op} \to \mathcal{M}$ factors through the subcategory of weak equivalences. This condition is the *co-Segal condition*.

Pictorially, we are requiring the following to be a homotopically constant diagram

2

A Segal algebra is the data $X(1) \otimes X(1) \stackrel{\leftarrow}{\simeq} X(2) \rightarrow X(1)$.

Co-Segal algebras are very useful. They are in the background any time you have $S \otimes S \to S$ and $f : R \simeq S$. In particular, you have $R \otimes R \to S \otimes S \to S \leftarrow R$.

You also see co-Segal algebras in loop spaces, and it shows you $\Omega_*(X)$ is a co-Segal algebra with one object.

Let *B* be a dga. If the cohomology $H^*(B)$ is free then any cycle choosing map is a quasi-isomorphism $H^*(B) \to B$, and this makes the data $(B, H^*(B))$ into a co-Segal algebra.

Co-Segal algebra structure helps with the following problem. Given an operad \emptyset , when can you lift \emptyset -algebra structure to some *B* sitting over *A*, i.e. when does $\emptyset(n) \otimes A^{\otimes n} \to A$ lift along a map $B \to A$. This works if you take a cofibrant replacement \emptyset_{∞} of \emptyset .

4. MAIN RESULTS

Theorem 4.1. Let \mathcal{M} be a symmetric monoidal model category. If $(\mathcal{V}, \otimes, U)$ is a symmetric monoidal, combinatorial model category satisfying the monoid axiom then there is a nice model structure on co-Segal algebras.

This is constructed as a left Bousfield localization of the projective model structure on the diagram category (the one that appears in the definition of co-Segal algebra), where you precisely force the fibrant objects to be those satisfying the co-Segal condition. Define a *coSegal 2-algebra* to be a monoid in the category of co-Segal algebras.

Back to Deligne's Conjecture. We wanted to find a resolution $BA \xrightarrow{\simeq} A$ with some map $BA \otimes BA \xrightarrow{\simeq} BA$. Since $BA \xrightarrow{\simeq} A$ is a projective resolution, $BA \otimes BA \xrightarrow{q \otimes Id} BA \otimes A \simeq BA$ is a weak equivalence in $(chBimod_A, \otimes_A, A)$. Indeed, this classical result from homological algebra was perhaps the motivation for Hovey's definition of monoidal model category and his use of the condition that 'cofibrant objects are flat.'

Theorem 4.2. If K is a field and A is a K-algebra then there are two coSegal algebra structures on $HH^1(A)$.

HUGO BACARD

We may now state the main result, which relates this work to Deligne's Conjecture:

Theorem 4.3. Let \mathcal{M} be a monoidal model category satisfying the monoid axiom. Then REnd(I) is a coSegal 2-algebra.

There is also a version of this theorem for \mathcal{M} an abelian category with enough projectives and injectives.

Kock and Toën approach Deligne's Conjecture by an adjunction between E_{∞} -algebras and Δ^n -algebras. So one area for future work is to lift their approach on derived mapping spaces to internal hom spaces, i.e. to get a similar result with REnd(E).

4