
WHAT IS AN ELEMENTARY HIGHER TOPOS?

ANDRÉ JOYAL

Abstract. There should be a notion of elementary higher topos in higher topos
theory, like there is a notion of elementary topos in topos theory. We are propos-
ing axioms partly inspired by homotopy type theory. We also give a purely cate-
gorical description of homotopy type theory.

This talk will contain a definition, but the speaker is hoping to find the best defini-
tion possible. We may not get through all the slides, so the reader is encouraged to
look at the slides.

Whitehead wanted a purely algebraic theory which is equivalent to homotopy the-
ory. Some approaches so far:

Triangulated categories (Verdier 1963)
Homotopical algebra (Quillen, 1967)
Fibration categories (Brown, 1973)
homotopy theories (Heller, 1988)
theory of derivators (Grothendieck 1987)
Homotopy Type Theory
Elementary higher topos?

The formal language of type theory can be very unnatural to a classically trained
mathematician. In particular, the types of proofs which appear. That’s why the
speaker has attempted to re-frame the theory in category theoretic terms.

See the slides for resources to learn HoTT.

1. Categorical homotopy type theory

This theory is based on the notion of a tribe. There are two types of tribe: π-tribe
and h-tribe. This notion should lead to

A quadrable object in a category is one where you can take it’s cartesian object
with any other object. A map is quadrable if the base change (pullback) of this
map along any other map exists.

A tribe structure on a category C (with a terminal object >) is a class of maps F
satisfying fibration-like axioms:
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2 ANDRÉ JOYAL

(1) F contains the isomorphisms and is closed under composition.

(2) Every map in F is quadrable and F is closed under base change

(3) The map X → > is in F for all X.

A tribe is a category with a terminal object equipped with a tribe structure. A map
in F is called a fibration.

One can view a fibration as a collection of objects parameterized by points in the
base, i.e. p : E → A is a family (E(x) : x ∈ A) of objects of C parameterized
by elements of A. A tribe is then a collection of families closed under certain
operations.

For any object A of a tribe C, the local tribe C(A) is the full subcategory of C/A
whose objects are the fibrations with codomain A. A map f : (E, p) → (F, q) is a
fibration if f : E → F is a fibration in C.

Using the language of tribes we now give definitions which are suggestive of a
connection to type theory.

An object of a tribe is called a type. Notation ` E: Type

A map t : > → E is a term of type E. Notation ` t:E

An object (E,p) of C(A) is a dependent type in context x : A. Notation x:A `
E(x):Type

A section t of p : E → A is a dependent term t(x) : E(x). Notation x:A ` t(x) :
E(x)

A homomorphism of tribes is a functor F : C → D which takes fibrations to
fibrations, preserves base change along fibrations, and preserves terminal objects.
This is like moving from one universe to another via an interpretation.

Example: given any f : A → B a map in tribe C, the base change functor f ∗ :
C(B)→ C(A) is a homomorphism.

In type theory there are deduction rules, e.g. ‘if y : B ` E(y) :Type’ then you can
deduce ‘x:A ` E( f (x)):Type’

This is written

y:B ` E(y):Type
x:A ` E(f(x)):Type

An example of this is context weakening

` E:Type
x : A ` E:Type
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In the tribe setting this is just the base change functor iA : C → C(A) along the map
A → > which crushes A. We say iA is simple and that C(A) is a simple extension
of C.

Consider δA : A → A × A and you get a map δA : >A → iA(A) in C(A). It is a
term δA : iA(A), i.e. a term of type iA(A). This term did not exist in C but does in
C(A).

Theorem 1.1. The simple extension iA is freely generated by the term δA : i(A), i.e.
a term of type A. Thus, C(A) = C[xA] with xA = δA just like adding a free variable
to a polynomial ring.

Hence, the diagonal δA : i(A) is generic.

1.1. Sums and Products. The base-change functor along a fibration f has a left
adjoint, given by composition with f . Denote this Σ f : C(A) → C(B). Get ΣA :
C(A) → C as the left adjoint of iA. Then ΣA(E, p) = E. So this ΣA is a summation
operator, since the domain of a fibration p is the sum of its fibers. We now have
what we need to do dependent types in type theory. In particular, we have the
Σ-formation rule

x : A ` E(x):Type
` Σx∈AE(x) : Type

There is also the Σ-introduction rule, which is how you get a term (a, y) of type
Σx:AE(x). You can deduce such a term from the rule above along with a : A and
y : E(a).

The section space or product of a map p : E → A is an object
∏

A(E) =
∏

A(E, p)
equipped with ε :

∏
A(E)×A→ E in C/A called the evaluation, such that for every

object C and every map u : C×A→ E in C/A there is a unique map v : C →
∏

A(E)
such that v × A : C × A →

∏
A(E) × A is a lift of u along the evaluation map. We

write v = λA(u).

Note: you need the codomain to be quadrable so that ε can be defined on a prod-
uct.

1.2. π-tribes. Let f be a quadrable map in C. The product Π f (E) of E = (E, p) ∈
C/A along f : A→ B is the space of sections of the map (E, f p)→ (A, f ) in C/B.
For every y : B we have Π f (E)(y) =

∏
f (x)=y E(x)

A tribe is said to be a π-tribe if every fibration E → A has a product along every
fibration f : A→ B and the structure map

∏
f (E)→ B is a fibration. So it’s a tribe

with products.

In type theory there are
∏

-formation rule and
∏

-introduction rules to create the
type `

∏
x:A E(x) : Type (this is formed by just taking the product over all x : A)

and terms λ(x : A)t(x) of type
∏

x:A E(x) : Type.
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1.3. h-tribes. A map u : A → B is anodyne if it has the left lifting property with
respect to every fibration. Think of this as a trivial cofibration.

Say that a tribe C is homotopical (a.k.a. an h-tribe) if every map can be factored
into an anodyne map followed by a fibration and if the base change of an anodyne
map along a fibration is an anodyne map.

We can now define path objects in a way completely analogous to what is done for
model categories.

We can form the identity type of A as x : A, y : A ` IdA(x, y) : Type. A term p
of this type is a proof that x = y. This is one of the big punchlines of type theory.
Proofs are terms. Classically, proofs are abstraction. They are not themselves
objects.

For example, the proof that x = x is given by the reflexivity term r(x) : IdA(x, x).

Awodey and Warren proved that the reflexivity term r : A → IdA is anodyne and
so the identity type IdA is a path object for A, i.e. reflexivity is a lift of the diagonal
A → A × A. Note that this reflexivity term is not unique, but it is unique up to a
contractible choice.

The J-rule is an operation which takes a commutative square with p a fibration to
a diagonal filler d = J(u, p). This was constructed classically in an ad hoc way, but
you could perhaps also construct it as a term of type F ` X where F is the type
of all square shaped diagrams with equality as the bottom horizontal map.

2. Homotopy

The type theorists think of a homotopy as a proof that f = g, i.e. as a term of type
IdB( f (x), g(x)).

This is a small philosophical difference to the work we do, and he hopes this will
not prevent homotopy theorists from being friends with type theorists.

With this notion we have the homotopy category as a quotient category by the
congruence relation.

u : A→ B is homotopy monic if it’s part of a homotopy pullback.

A
1A //

1A
��

A

u
��

A u
// B

An object A ∈ C is an h-proposition if the map A→ > is homotopy monic. A zero
type (or h-set) is an object A where P(A) is an h-proposition, where P is for path
object. This occurs iff the diagonal is homotopy monic.
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An object is homotopy initial if every fibration to this object has a section. They
don’t ask that this section is unique, but you can show that it’s homotopy unique.

There is also a notion of homotopy coproduct as A → A ∪ B ← B such that any
fibration E → A ∪ B and every pair f , g : A, B → E one can find a section of p to
make the diagram commute. Again, this section is only homotopy unique.

A homotopy natural number object is a homotopy initial object in a certain category
equipped with an automorphism and a point (think of these as the successor map
and the 0 object).

2.1. Function Extensionality. A Martin-Lof tribe is an h-tribe which is also a π-
tribe such that

∏
f : C(A)→ C(B) preserves the homotopy relation for f : A→ B.

This is equivalent to the function extensionality axiom in the type theory.

A class of small fibrations in a tribe C is a class F ′ which contains the isomor-
phisms and is closed under composition and base change. A small fibration q is
universal if every small fibration is a base change of q.

A π-tribe is π-closed if the product of small fibrations and small fibrations is
small.

It’s called h-closed if the path fibration can be chosen small for all A

A Martin-Lof (ML) universe is C which is π-closed and h-closed.

2.2. Univalence. In a πh-tribe there is an object Eq(X,Y) which represents the
homotopy equivalences X → Y .

For every p : E → A in a πh-tribe there is a fibration (s, t) : EqA(E) → A × A
defined by EqA(E) = Eq(p∗1E, p∗2E).

A fibration E → A is univalent if the unit map u : A → EqA(E) is a homotopy
equivalence.

A Kan fibration is univalent iff it is uncompressable. To compress a Kan fibration
p is to find a homotopy pullback square expressing p as the base change along a
map s which is homotopy surjective but not homotopy monic.

Note: every Kan fibration is the pullback of an uncompressible fibration along a ho-
motopy surjection. Moreover, the compressed fibration is homotopy unique.

Voevodsky proved that the tribe of Kan complexes admits a univalent ML-universe
U′ → U.

A Voevodsky tribe is a ML-tribeC equipped with a univalent ML-universe U′ → U.
This results in V-type theory.

Voevodsky conjectured that ` s = t : A is decidable in V-type theory. Moreover,
every globally defined term ` t : N is definitionally equal to a numeral s′′(0) :
N.
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The HoTT group is working on proving this. They’re not done yet. If true then you
could really work with a computer to do homotopy theory.

See the ending slides for what has been proven in the HoTT.

Open Problems:
No notion of (internal) simplicial object
No notion of (internal) Segal space
No notion of (internal) complete Segal space

An elementary higher topos should be essentially algebraic or combinatorial.

At this point, time ran out. Remaining slide titles:

Grothendieck Topos
Higher topos
Rezk’s theorem characterizing higher topos via descent
Toen-Vezzosi characterization
Lurie’s characterization
Desiderata for notion of elementary higher topos
Which model of (∞, 1)-category should be used for formalizing it (he used a new
notion called pre-model categories, and has a number of slides on them).
Axiomatization for elementary higher topos has 18 axioms coming from a number
of places, e.g. homotopical axioms, geometrical axioms, logical axioms, arithmeti-
cal axioms

Examples of elementary higher topos: sSet, simplical presheaves over any elegant
Reedy category, symmetric cubical sets, one more I didn’t catch.

A pre-model category has everything a model category has but not necessarily
all colimits and limits. You only have the pullbacks needed to get at homotopy
pullback squares with respect to a fibration.
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Plan of the talk

I Review of (categorical) homotopy type theory

I Review of toposes and higher toposes

I Elementary higher topos?
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Axiomatic Homotopy Theory
J.H.C. Whitehead (1950):

The ultimate aim of algebraic homotopy is to construct a purely
algebraic theory, which is equivalent to homotopy theory in the
same sort of way that analytic is equivalent to pure projective
geometry.

Examples of axiomatic systems in homotopy theory:

I Triangulated categories (Verdier 1963);

I Homotopical algebra (Quillen 1967);

I Fibration categories (Brown 1973);

I Homotopy theories (Heller 1988)

I Theory of derivators (Grothendieck 198?)

I Homotopy type theory

I Elementary higher topos?
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The emergence of Homotopy Type Theory

Gestation:

I Russell: Mathematical logic based on the theory of types
(1908)

I Church: A formulation of the simple theory of types (1940)

I Lawvere: Equality in hyperdoctrines and comprehension
schema as an adjoint functor (1968)

I Martin-Löf: Intuitionistic theory of types (1971, 1975, 1984)

I Hofmann, Streicher: The groupoid interpretation of type
theory (1995)

Birth:

I Awodey, Warren: Homotopy theoretic models of identity
types (2006∼2007)

I Voevodsky: Notes on type systems (2006∼2009)
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Suggested readings

Recent work in homotopy type theory
Slides of a talk by Steve Awodey, AMS meeting January 2014

Notes on homotopy λ-calculus
Vladimir Voevodsky

Homotopy Type Theory
A book by the participants to the Univalent Foundation Program,
IAS, 2012-13

Categorical Homotopy Type Theory
Slides of a talk, MIT Topology Seminar, March 17, 2014
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Categorical homotopy type theory

tribe

**tt
π − tribe

**

h − tribe

tt
Martin-Löf tribe

��
Voevodsky tribe

��
Elementary higher topos?
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Quadrable objects and maps

An object X of a category C is quadrable if the cartesian product
A× X exists for every object A ∈ C.

A map p : X → B is quadrable if the object (X , p) of the
category C/B is quadrable. This means that the pullback square

A×B X

p1

��

p2 // X

p

��
A

f // B

exists for every map f : A→ B.

The projection p1 is called the base change of p : X → B along
f : A→ B.
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Tribes

Let C be a category with terminal object >.

Definition
A tribe structure on C is a class of maps F ⊆ C satisfying the
following conditions:

I F contains the isomorphisms and is closed under composition;

I every map in F is quadrable and F is closed under base
changes;

I the map X → > belongs to F for every object X ∈ C.

A tribe is a category C with terminal object equipped with a tribe
structure F . A map in F is called a fibration.
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Fibrations and families

The fiber E (a) of a fibration p : E → A at a point a : A is defined
by the pullback square

E (a)

��

// E

p

��
> a // A.

A fibration p : E → A is a family (E (x) : x ∈ A) of objects of C
parametrized by a variable element x ∈ A.

A tribe is a collection of families closed under certain operations.
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Types and terms

An object E of a tribe C is called a type. Notation:

` E : Type

A map t : > → E in C is called a term of type E . Notation:

` t : E
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The local tribe C(A)
For an object A of a tribe C.

The local tribe C(A) is the full sub-category of C/A whose objects
(E , p) are the fibrations p : E → A with codomain A.

A map f : (E , p)→ (F , q) in C(A) is a fibration if the map
f : E → F is a fibration in C.

An object (E , p) of C(A) is a dependent type in context x : A.

x : A ` E (x) : Type

A section t of a fibration p : E → A is a dependent term
t(x) : E (x) in context x : A.

x : A ` t(x) : E (x)
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Homomorphism of tribes

A homomorphism of tribes is a functor F : C → D which

I takes fibrations to fibrations;

I preserves base changes of fibrations;

I preserves terminal objects.

For example, if f : A→ B is a map in a tribe C, then the base
change functor

f ? : C(B)→ C(A)

is a homomorphism of tribes.

Remark: The category of tribes is a 2-category, where a 1-cell is a
homomorphism and 2-cell is a natural transformation.
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Base change=change of parameters

In type theory, the base change functor f ? : C(B)→ C(A) along a
map f : A→ B is expressed by the following deduction rule

y : B ` E (y) : Type

x : A ` E (f (x)) : Type.

In particular, the base change functor iA : C → C(A) along the map
A→ > takes an object E ∈ C to the object iA(E ) = (E × A, p2).

The functor iA is expressed by a deduction rule called context
weakening:

` E : Type

x : A ` E : Type.

We shall say that the extension iA : C → C(A) of the tribe C is
simple.
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Simple extensions are free

Let i = iA : C → C(A) be the base change functor along the map
A→ >.

The diagonal δA : A→ A× A is a section of the projection
p2 : A× A→ A. It defines a term δA : i(A) in C(A).

Theorem
The simple extension i : C → C(A) is freely generated by the term
δA : i(A). Thus, C(A) = C[xA] with xA = δA.

Hence the diagonal δA : i(A) is generic.
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Summation

The base change functor iA : C → C(A) has a left adjoint

ΣA : C(A)→ C

which takes a fibration p : E → A to its domain E = ΣA(E , p).

Intuitively, the domain of a fibration p : E → A is the sum of its
fibers,

E =
∑
x :A

E (x).

Hence the functor ΣA : C(A)→ C is a summation operation.
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Σ-rules

In type theory, the functor ΣA : C(A)→ C is constructed from the
Σ-formation rule,

x : A ` E (x) : Type

`
∑
x :A

E (x) : Type

A term t :
∑

x :A E (x) is a pair t = (a, y) with a : A and y : E (a).

Hence the Σ-introduction rule,

` a : A ` y : E (a)

` (a, y) :
∑
x :A

E (x)

The projection pr1 :
∑

x :A E (x)→ A is called the display map.

16 / 70



Pushforward

More generally, if f : A→ B is a fibration in a tribe C, then the
base change functor f ? : C(B)→ C(A) has a left adjoint

Σf = f! : C(A)→ C(B)

obtained by putting Σf (E , p) = (E , fp).

We have
Σf (E )(y) =

∑
f (x)=y

E (x)

for a term y : B.
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Function space [A,B]

Let A be a quadrable object in a category C.

Recall that the exponential of an object B ∈ C by A is an object
[A,B] equipped with a map ε : [A,B]× A→ B, called the
evaluation, such that for every object C ∈ C and every map
u : C × A→ B, there exists a unique map v : C → [A,B] such
that ε(v × A) = u.

[A,B]× A

ε

��
C × A

v×A
88

u // B

We write v = λA(u).
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Section space ΠA(E )

Let A be a quadrable object in a category C.

The section space of a map p : E → A is an object
ΠA(E ) = ΠA(E , p) equipped with a map

ε : ΠA(E )× A→ E

in C/A, called the evaluation, such that for every object C and
every map u : C × A→ E in C/A there exists a unique map
v : C → ΠA(E ) such that,

ΠA(E )× A

ε

��
C × A

v×A
88

u // E

We write v = λA(u).
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Product along a map

Let f : A→ B be a quadrable map in a category C.

The product Πf (E ) of an object E = (E , p) ∈ C/A along the map
f : A→ B is the space of sections of the map (E , fp)→ (A, f ) in
the category C/B,

E

p

��

Πf (E )

��
A

f //// B

For every y : B we have

Πf (E )(y) =
∏

f (x)=y

E (x)
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π-tribes

Definition
We say that a tribe C is π-closed, and that it is a π-tribe, if every
fibration E → A has a product along every fibration f : A→ B and
the structure map Πf (E )→ B is a fibration.

If f : A→ B is a fibration in a π-tribe C, then the base change
functor f ? : C(B)→ C(A) admits a right adjoint

Πf : C(A)→ C(B).

Remark: if C is a π-tribe, then so is the tribe C(A) for every object
A ∈ C.
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Examples of π-tribes

I A cartesian closed category, where a fibration is a projection;

I A locally cartesian category if every map is a fibration;

I The category of small groupoids Grpd, if a fibration is an
iso-fibration (Hofmann and Streicher);

I The category of Kan complexes Kan, where a fibrations is a
Kan fibration (Streicher, Voevodsky).
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Π-rules

In type theory, the functor ΠA : C/A→ C is constructed from the
Π-formation rule,

x : A ` E (x) : Type

`
∏
x :A

E (x) : Type

A term t : Πx :AE (x) is a map x 7→ t(x), where t(x) is a term of
type E (x) for each x : A.

Hence the Π-introduction rule,

x : A ` t(x) : E (x)

` λxt(x) :
∏
x :A

E (x)

where λxt(x) stands for the map x 7→ t(x).
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Anodyne maps

Definition
We say that a map u : A→ B in a tribe C is anodyne if it has the
left lifting property with respect to every fibration f : X → Y .

Thus, if u is anodyne and f is a fibration, then every commutative
square

A

u
��

a // X

f
��

B
b // Y

has a diagonal filler d : B → X ( du = a and fd = b).
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Homotopical tribes

Definition
We say that a tribe C is homotopical, or that it is a h-tribe, if the
following two conditions are satisfied

I every map f : A→ B admits a factorization f = pu with u an
anodyne map and p a fibration;

I the base change of an anodyne map along a fibration is
anodyne.

Remark: if C is a h-tribe, then so is the tribe C(A) for every object
A ∈ C.
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Examples of h-tribes

I The category of groupoids Grpd, where a functor is anodyne
if it is a monic equivalence (Hofmann and Streicher);

I The category of Kan complexes Kan, where a map is anodyne
if it is a monic homotopy equivalence (Streicher, Awodey and
Warren, Voevodsky);

I The syntactic category of Martin-Löf type theory, where a
fibration is a map isomorphic to a display map (Gambino and
Garner).
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Path object

Let A be an object in a h-tribe C.

A path object for A is a factorisation of the diagonal
∆ : A→ A× A as an anodyne map r : A→ PA followed by a
fibration (s, t) : PA→ A× A,

PA

(s,t)

��
A

r

==

∆ // A× A.
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Identity type

In Martin-Löf type theory, there is a type constructor which
associates to every type A a dependent type

x :A, y :A ` IdA(x , y) : Type

called the identity type of A.

A term p : IdA(x , y) is regarded as a proof that x = y .

The tautological proof that x = x is given by a term

x :A ` r(x) : IdA(x , x)

called the reflexivity term.
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Identity type as a path object

Awodey and Warren: it follows from the J-rule of type theory
that the identity type

IdA =
∑
x :A

∑
y :A

IdA(x , y)

is a path object for A,

IdA

〈s,t〉

��
A

r

==

∆ // A× A
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The J-rule

The J-rule of type theory is an operation which takes a
commutative square

A

r
��

u // E

p

��
IdA IdA

with p a fibration, to a diagonal filler d = J(u).
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Homotopic maps
Let C be a h-tribe.

A homotopy h : f  g between two maps f , g : A→ B in C
is a map h : A→ PB

B

A

g //

f
//

h // PB

s

==

t

!!
B

such that sh = f and th = g .

In type theory, h is regarded as a proof that f = g ,

x : A ` h(x) : IdB(f (x), g(x)).

31 / 70



The homotopy category

Let C be a h-tribe.

Theorem
The homotopy relation f ∼ g is a congruence on the arrows of C.

The homotopy category Ho(C) is the quotient category C/ ∼.

A map f : X → Y in C is called a homotopy equivalence if it is
invertible in Ho(C).

Every anodyne map is a homotopy equivalence.

An object X is contractible if the map X → > is a homotopy
equivalence.
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h-propositions

A map u : A→ B is homotopy monic if the square

A
1A //

1A
��

A

u
��

A
u // B

is homotopy pullback.

Definition
An object A ∈ C is a h-proposition if the map A→ > is homotopy
monic.

An object A is a h-proposition iff the diagonal A→ A× A is a
homotopy equivalence.
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n-types

The fibration 〈s, t〉 : PA→ A× A is an object P(A) of the local
tribe C(A× A).

An object A is

I a 0-type if P(A) is a h-proposition in C(A× A);

I a (n + 1)-type if P(A) is a n-type in C(A× A).

A 0-type is also called a h-set.

An object A is a h-set iff the diagonal A→ A× A is homotopy
monic.
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Homotopy initial objects

Let C be a h-tribe.

An object ⊥ ∈ C is h-initial if every fibration p : E → ⊥ has a
section σ : ⊥ → E ,

E

p
��
⊥.

σ

]]

A h-initial object remains initial in Ho(C).
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Homotopy coproducts

An object A t B equipped with a pair of maps

A
i // A t B B

joo

is a h-coproduct of A and B if for every fibration p : E → A t B
and every pair of maps f , g : A,B → E such that pf = i and
pg = j ,

E

p
��

A
i
//

f

<<

A t B B
j

oo

g
bb

there exists a section σ : A t B → E of p such that σi = f and
σj = g .

A h-coproduct remains a coproduct in Ho(C).
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Homotopy natural number object

A homotopy natural number object (N, s, 0) is h-initial in the
category of triples (X , f , a), where X ∈ C, f : X → X and a : X .

If p : X → N is a fibration such that pf = sp and p(a) = 0

?
a // X

f //

p
��

X

p
��

?
0 // N s // N

then p has a section σ : N→ X such that σs = f σ and σ(0) = a.

A homotopy natural number object (N, s, 0) is not necessarily a
natural number object in Ho(C).
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Homotopy pushout

The notion of homotopy pushout can be defined in a h-tribe.

The existence of homotopy pushouts can be added as an axiom
(existence of higher inductive types), from which the following
objects can be constructed:

I An interval object (I, 0, 1).

I The join X ? Y of two objects X and Y .

I The n-sphere Sn for every n ≥ 0.
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Interval and path spaces

(Warren) It would be great to extend type theory (or the notion of
h-tribe) by adding an interval object (I, 0, 1) and the following
axioms:

I the exponential AI exists for every type A;

I the joint projection (∂0, ∂1) : AI → A× A is a fibration;

I diagonal δ : A→ AI is anodyne.

AI

(∂0,∂1)

��
A

δ

==

∆ // A× A.
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Martin-Löf tribes

Definition
We say that a h-tribe C is Martin-Löf if it is a π-tribe and the
product functor

Πf : C(A)→ C(B)

preserves the homotopy relation for every fibration f : A→ B.

The condition that the functor ΠA : C(A)→ C preserves the
homotopy relation is called function extensionality:

x : A ` h(x) : f (x) ∼ g(x)

` λxh(x) : f ∼ g
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Small fibrations and universes

A class of small fibrations in a tribe C = (C,F) is a class of maps
F ′ ⊆ F which contains the isomorphisms and is closed under
composition and base changes. An object X ∈ C is small if the
fibration X → > is small.

A small fibration q : U ′ → U is universal if for every small
fibration p : E → A there exists a cartesian square:

E //

p

��

U ′

q

��
A // U.

A universe is the codomain of a universal small fibration U ′ → U.
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h-universes

The following weaker notion of universality is often sufficient for
many purposes.
A small fibration q : U ′ → U is h-universal if for every small
fibration p : E → A there exists a homotopy cartesian square:

E //

p

��

U ′

q

��
A // U.
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Martin-Löf universes

We say that a universe U ′ → U in a π-tribe C is π-closed if the
product of a small fibration along a small fibration is small.

We say that a universe U ′ → U in a h-tribe C is h-closed if the
relative path fibration PA(E )→ E ×A E can be chosen small for
every small fibration E → A.

We shall say that a universe which is both π-closed and h-closed is
a Martin-Löf universe.
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Univalent fibrations

In a πh-tribe C,

For every pair of objects X ,Y ∈ C, there is an object Eq(X ,Y )
which represents the homotopy equivalences X → Y .

If p : E → A is a fibration in C, then the fibration

(s, t) : EqA(E )→ A× A

defined by putting EqA(E ) = Eq(p?1E , p?2E ) represents the
homotopy equivalences between the fibers of p : E → A.

Voevodsky:

Definition
A fibration E → A is univalent if the unit map u : A→ EqA(E ) is
a homotopy equivalence.
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Uncompressible fibrations

We remark that a Kan fibration is univalent iff it is
uncompressible.

To compress a Kan fibration p : X → A is to find a homotopy
pullback square

X //

��

Y

��
A

s // B

in which s is homotopy surjective but not homotopy monic.

Every Kan fibration X → A is the pullback of an uncompressible
fibration X ′ → A′ along a homotopy surjection A→ A′. Moreover,
the compressed fibration X ′ → A′ is homotopy unique.
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Voevodsky tribes

Voevodsky: The tribe of Kan complexes Kan admits a univalent
ML-universe U ′ → U.

Definition
A V-tribe is a ML-tribe C equipped with a univalent ML-universe
U ′ → U.

Voevodsky’s conjecture : The relation ` s = t : A is decidable in
V-type theory. Moreover, every globally defined term ` t : N is
definitionally equal to a numeral sn(0) : N.
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Results and problems in Hott

Some results:

I Shulman: π1(S1) = Z
I Licata: πn(Sn) = Z for n > 0, πk(Sn) = 0 for k < n,

I Brunerie π3(S2) = Z
I Lumsdane, Finster, Licata: Freudenthal suspension theorem.

Some problems:

I π4(S3) = Z/2 ?

I No notion of (internal) simplicial object

I No notion of (internal) Segal space

I No notion of (internal) complete Segal space
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Beyond type theory?

Type theory is not yet able to support the theory of
(∞, 1)-categories.

In which direction should it evolve?

Type theory may be used as an internal language in the theory of
higher topos.

But what is an elementary higher topos?
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A missing stone

Higher topos ?

Grothendieck topos Elementary topos

What is an elementary higher topos?

elementary = essentially algebraic = combinatorial
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Grothendieck topos

Grothendieck:

Definition
A topos is a left exact localization of the category of presheaves
Psh(C) on a small category C.

Giraud:

Theorem
A presentable category E is a topos iff the following conditions are
satisfied:

I colimits are stable by base changes;

I coproducts are disjoint;

I every equivalence relation is effective.
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Elementary topos

Lawvere and Tierney:

Definition
An elementary topos is a locally cartesian closed category with a
sub-object classifier (Ω, t).

t : 1→ Ω and for every monomorphism A′ → A there exists a
unique map f : A→ Ω, such that f −1(t) = A′,

A′ //

��

1

t
��

A
f // Ω

Ω = {0, 1} in the category Set.

We may suppose the existence of a natural number object N.
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Geometrical versus logical

If E and E ′ are Grothendieck toposes, then a functor F : E → E ′ is
a geometric homomorphism if it preserves

I all (small) colimits

I finite limits

If E and E ′ are elementary toposes, then a functor F : E → E ′ is a
logical homomorphism if it preserves

I finite limits;

I internal products: F Πf (X ) ' ΠF (f )(FX ) for every f : A→ B
and every X ∈ E/A;

I subobject classifiers: F Ω ' Ω′.
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Higher topos

Higher topos=homotopy topos=model topos=∞-topos

Rezk:

Definition
A homotopy topos is a homotopy left exact Bousfield localization
of the model category of simplicial presheaves sPsh(C) on a small
simplicial category C.

Lurie:

Definition
An ∞-topos is a left exact localization of the quasi-category of
pre-stack Pst(C) on a small quasi-category C.
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Rezk’s theorem

Theorem
A presentable model category E is a homotopy topos iff it has
descent.

descent: for any small diagram A : I → E the pullback functor

E/hocolimIA→ Equifib(E I/A)

is an equivalence of model categories.

A diagram B : I → E over A is equifibered if all the naturality
squares

B(i) //

��

B(j)

��
A(i) // a(j)

are homotopy pullback.
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Toën and Vezzosi’s characterisation

Theorem
A presentable model category E is a higher topos iff the following
conditions are satisfied:

I colimits are stable under base changes;

I coproducts are disjoint;

I every Segal groupoid is the Cech complex of a map.

The Cech complex of a map f : A→ B is the simplicial object
C?(f ) defined by putting

Cn(f ) = A×B . . .×B A (n + 1 times)

for every n ≥ 0.
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Lurie’s characterisation

Theorem
A presentable quasi-category E is a higher topos iff its class of
k-compact morphisms has a classifying universe U ′k → Uk for each
regular cardinal k > 0.

Thus, for every k-compact morphism A′ → A, there exists a
pullback square

A′
f ′ //

��

U ′k

��
A

f // Uk

and the pair (f , f ′) is homotopy unique.
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Desiderata for the notion of EH-topos

A wish list:

I The notion of EH-topos should be essentially algebraic;

I Every slice E/A of an EH-topos E should be an EH-topos;

I The category of internal simplical objects E∆op
of an

EH-topos E should be an EH-topos;

I Every higher topos should be *equivalent* to an EH-topos.
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Which is best?

The notion of EH topos could be formalized by using any notion of
(∞, 1)-category:

I simplicial category

I complete Segal space;

I Segal category;

I model category;

I relative category.

I quasi-category

These notions are equivalent (Bergner, Joyal-Tierney,
Barwik-Kan), but very different algebraically.

The language of Quillen model categories seems best for
formulating the notion of EH-topos.
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Wild objects in a model category

But the classical notion of model category is too permissive for
axiomatic homotopy theory.

Because an object A×B C defined by a pullback square

A×B C

��

// C

��
A // B

is not homotopy invariant, unless the square is homotopy pullback.

Ungrammatical sentences are normally excluded from a formal
language.

We need to generalize the notion of model category.
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pre-model category

Lumsdane, Stanculescu:

Definition
A pre-model structure on a category E is a triple (C,W,F) of
classes maps in E such that:

I W satisfies 3-for-2;

I Each pair (C ∩W,F) and (C,W ∩F) is a weak factorization
systems;

I maps in F are quadrable and maps in C co-quadrable.

A pre-model category is a category E with > and ⊥ equipped with
a pre-model structure (C,W,F).
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Properness

A pre-model structure is right proper (resp. left proper) if the base
(resp. cobase) change of a weak equivalence along a fibration
(resp. a cofibation) is a weak equivalence. A pre-model structure is
proper if it is both left and right proper.
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EH-topos?

Tentative definition (version 2).

Definition
We shall say that a pre-model category E equipped a universe
U ′ → U is an elementary higher topos if it satisfies the following
axioms:

I Homotopical axioms: H1-H3

I Geometrical axioms G1-G7

I Logical axioms L1-L6

I Arithmetical axioms A1-A2

There are 18 axioms in all!

Remark: Hilbert’s elementary euclidian geometry has 19 axioms.
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Homotopical axioms

I H1: the model structure is right proper

I H2: every object is cofibrant

I H3: the base change of a cofibration along a fibration is a
cofibration

Remark: It follows from these axioms that the pre-model structure
is proper.

We denote by E(A) the full subcategory of E/A whose objects are
the fibrations p : E → A with codomain A.

It follows from the axioms that E(A) is a h-tribe.
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Geometrical axioms

I G1: the initial object ⊥ is strict and the map ⊥ → X is a
fibration for every X ;

I G2: the inclusions X → X t Y is a fibration for every pair of
objects (X ,Y );

I G3: the functor (i?1 , i
?
2 ) : E/(X t Y )→ E/X × E/Y is an

equivalence of pre-model categories.

I G4: if f : X → Y is a fibration, then the base change functor
f ? : E/Y → E/X preserves cobase changes of cofibrations;

I G5: the contravariant pseudo-functor E(−) : Eop → Cat takes
the square of a cobase change of a cofibration to a
pseudo-pullback;

I G6: every fibration factors as a homotopy surjection followed
by a monic fibration;

I G7: every pseudo-groupoid is effective.
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Logical axioms

I L1: the product of a fibration along a fibration exists;

I L2: if u : A→ B is a cofibration between fibrant objects and
p : E → B is a fibration, then the map

u? : ΠB(E )→ ΠA(u?(E ))

induced by u is fibration. Moreover, u? is acyclic when u is
acyclic.

I L3: the axiom L2 is true in every slice E/A;

I L4: small fibrations are closed under composition;

I L5: the product of a small fibration along a small fibration is
small;

I L6: the universe U is fibrant and the fibration U ′ → U is
univalent.

65 / 70



Arithmetical axioms

I A1: E contains a natural number object N
I A2: N is fibrant and small.
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Examples of EH-topos

I The category of simplicial sets sSet (Voevodsky);

I The category of simplicial presheaves over any elegant Reedy
category (Shulman).

I The category of symmetric cubical sets (Coquand).

I The category of presheaves over any elegant (local) test
category (Cisinski).
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Easy consequences

If E is an EH-topos, then

I the category E/A is an EH-topos for every object A ∈ E ;

I the base change functor f ? : E/B → E/A is a logical
homomorphism of EH-topos for every fibration f : A→ B.

I the functor f ? : E/B → E/A induces an equivalence of
homotopy categories iff the fibration f is acyclic.

Moreover

I the category E(A) has the structure of a V-tribe for every A;

I the base change functor f ? : E(B)→ E(A) is a
homomorphism of V -tribes for every map f : A→ B;

I the functor f ? : E(B)→ E(A) induces an equivalence of
homotopy categories iff f is acyclic.
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Some critiques

I It maybe enough to suppose that the small fibration U ′ → U
is h-universal;

I the univalence of the fibration U ′ → U may not be necessary
in the presence of axiom G7.
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THANK YOU FOR YOUR ATTENTION!
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