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This was a chalk talk. The speaker’s hand-written notes are at the bottom.

Joint work in progress with Nick Gurski and Niles Johnson.

Homotopy theorists have long been trying to find algebraic models for homotopy
types. We are seeking a categorical model for stable 2-types.

Theorem 0.1 (Thommason’s Theorem). Let Cat be the category of categories.
There is a Quillen equivalence of model categories Cat ' Top where the Thom-
mason model structure is taken on Cat, i.e. the weak equivalences are the functors
F : C → D such that the map of classifying spaces BC → BD is a weak equiva-
lence.

This means any space can be constructed up to weak equivalence as a classifying
space of some category.

Theorem 0.2 (Thommason and Mandell). The category SymMonCat of symmetric
monoidal categories is Quillen equivalent to connective spectra.

We again get a recognition principal via classifying spaces.

The difficulty of modeling the full homotopy type of a space might be behind the
need to consider the Thommason weak equivalences rather than simply categorical
equivalences. That’s our jumping off point.

1. Homotopy n-types

A homotopy n-type is a space X such that for all i > n and all x ∈ X πi(X, x) =

0.

Given a space Y , the Postnikov n-truncation is a homotopy n-type. It seems exactly
the lower homotopy groups.

You can get at homotopy n-types via Bousfield localization (inverting maps which
are isomorphisms on π<n.

A connected 1-type is a space which is connected and has only one homotopy
group. So it’s just BG = K(G, 1) where G is π1(X).

A connected 2-type is a crossed module, by a result of Whitehead.
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Crossed modules of length n are supposed to model n types. A different general-
ization is the notion of a Catn-group.

We will generalize in the direction of groupoids. The homotopy hypothesis says
that weak n-groupoids model homotopy n-types. This is a theorem for n = 1, 2, 3.

Defining strict n-categories is easy. You just go inductively. Weak n-categories are
harder but they give the right thing for the homotopy hypothesis. Let’s look at the
case n = 1.

The functors Groupoids� Top≤1 is induced by functors (B, π1) between Cat and
Top. Here π1 is for fundamental groupoid. The objects of π1(X) are the points of
X and the morphisms are homotopy classes of maps. That you land in groupoids is
just because paths can be reversed. It’s a theorem that via (B, π1) the homotopy cat-
egories of Cat and Top are equivalent. Note that (B, π1) need not be an adjunction
(because we did not necessarily pass through sSet).

Observe: equivalences in groupoids are just the categorical equivalences, because
the groupoid information is contained in π0 and π1, so an equivalence on classifying
spaces sees everything. Now we move on to n = 2.

A bicategory is the weak version of a 2-category. So you have objects, morphisms,
and 2-morphisms. For any two objects X,Y there is a category C(X,Y). Mor-
phisms in this category give you the notion of 2-morphisms. There must also be
composition C(Y,Z) × C(X,Y) → C(X,Z) and a functor 1X ∈ ob(C(X, X)) satisfy-
ing h ◦ (g ◦ f ) → (h ◦ g) ◦ f and natural isomorphisms 1Y ◦ f → f , f ◦ 1X → f .
The remaining axioms codify the point that the bicategory is a symmetric monoidal
category with many objects. So there’s an associative pentagon for instance.

Remark: there is in fact a tricategory of bicategories, but we won’t go there.

Examples:

(1) If C is a category then it’s a bicategory where all the 2-morphisms are
identities. So C(X,Y) is the discrete category on the set C(X,Y).

(2) The collection of small categories is a bicategory via categories, functors,
and natural transformations. In fact this is a strict 2-category because as-
sociativity for composition of functors holds on the nose.

(3) Let R be a commutative ring. Then BimodR is a bicategory whose objects
are R-algebras, 1-morphisms A→ B are A-B bimodules, and 2-morphisms
are bimodule maps. The composition of A → B and B → C is given
by − ⊗B −. This is not associative on the nose but only up to coherent
isomorphisms.

(4) Let X be a space. Consider the bigroupoid π2X whose objects are points of
X, 1-morphisms are paths x → y, and 2-morphisms are homotopy classes
of homotopies. Composition is associative up to a 2-morphism because we
are not taking Moore path spaces.
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In general a bigroupoid is a bicategory with invertible 2-morphisms and 1-morphisms
are invertible up to isomorphism (making use of the 2-morphisms).

The classifying space functor B : Bicat → Top factors through sS et as the nerve
followed by geometric realization. Here the 0-simplices NC0 are the objects of C,
NC1 are the 1-morphisms of C, and NC2 are fillers for triangles from 0 → 1 → 2
to the composition 0→ 2.

Theorem 1.1 (Moerdijk-Svensson). There is an equivalence of homotopy cate-
gories between Bigroupoids mod biequivalences and homotopy 2-types. This is
given by the classifying space in one direction and the fundamental bigroupoid in
the other direction.

The notion of biequivalence is that there is a pseudofunctor in each direction and
the composites are suitably equivalent to the identity functors.

Define π0(C) to be equivalence classes of objects, i.e. the connected components of
the corresponding graph. Next, for c ∈ C an object, π1(C, c) = C(c, c)/iso. Finally,
π2(C, c) = C(c, c)(1c, 1c). We can see this is a group. Eckmann-Hilton says it’s
actually an abelian group. These coincide with πi(BC, c).

2. StableWorld

A stable homotopy n-type is a spectrum X such that the homotopy groups πi(X) = 0
for i < 0 and i > n.

We will be working with grouplike E∞ n-types. When n = 0 this is just the category
of abelian groups. For n = 1 this is answered by the following folk theorem.

Theorem 2.1. The homotopy category of grouplike symmetric monoidal groupoids
(aka Picard categories) is equivalent to the category of stable homotopy 1-types.
Here the equivalences are categorical equivalences.

Now we move on to n = 2, stopping first to collect a different way to look at the
n = 1 case.

Theorem 2.2 (Johnson-Osorno). The Postnikov data of a Picard category C is
π0(C) the connected components, π1(C) = C(I, I), and π0(C) → π1(C) is given by
the symmetry isomorphism x⊗ x→ x⊗ x, i.e. x is taken to the map C(I, I) induced
by this symmetry isomorphism and the fact that C is Picard (so an automorphism
of any object gives an automorphism of the unit via inverting the object).

For n = 2 we will need to know that Picard bicategories are grouplike symmetric
monoidal bigroupoids. Let’s parse this sentence.

A symmetric monoidal bicategory is a bicategory C together with a pseudofunctor
⊗ : C×C → C, a unit object I, associators x⊗(y⊗z)→ (x⊗y)⊗z, twists τ : x⊗y→
y ⊗ x, and unit maps I ⊗ x → x ← x ⊗ I all pseudonatural equivalences subject
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to certain diagrams which commute up to a 2-morphism between the two ways of
going around. Then there are pages and pages encoding about 7 axioms.

The key piece that distinguishes a braided monoidal category from a symmetric
monoidal category is that in the latter has an extra condition regarding τ ◦ τ vs. the
identity. In fact there are other conditions one could choose. One choice leads to
sylleptic categories.

Example: BimodR with monoidal structure given by A ⊗R B.

Theorem 2.3 (Gurski-Osorno). These data are coherent. The classifying space BC
is an E∞-space.

This means you can actually construct a spectrum when you group complete.

Proof sketch: mimic Segal’s proof. Start with a symmetric monoidal bicategory C
and construct a special Γ-bicategory Γop → Bicat. Then construct a special Γ-space
Γop → Top. Your choices don’t matter thanks to the coherence result.

Theorem 2.4 (Gurski-Johnson-Osorno, 80% proven). There is an equivalence of
homotopy categories between Picard bicategories mod categorical equivalence
and stable homotopy 2-types.












