ASPECTS OF DIFFERENTIAL COHOMOLOGY

THOMAS NIKOLAUS

ABSTRACT. A differential cohomology theory is differential geometric refinement of a generalized cohomology theory (in the sense of algebraic topology). Examples naturally arise in physics or in the study of secondary invariants (e.g. Chern-Simons invariants). We discuss this notion from a higher categorical point of view. This leads to a natural decomposition of any differential cohomology theory which we illustrate with many examples. Moreover we show how to obtain a good integration theory and a notion of twisted differential cohomology and discuss some aspects and examples.

This was a chalk talk. The speaker decided not to share his hand-written lecture notes.

Advertisement: Conference on Modular Invariants in Topology and Analysis, 8-12 September 2014, Regensburg.

1. DEFINITIONS AND EXAMPLES

A *cohomology theory* is a functor from smooth manifolds to graded abelian groups which satisfies Mayer-Vietoris, takes coproducts to products, and has $E^*(M \times I) \cong E^*(M)$ (i.e. it's homotopy invariant). We assume these are represented by spectra.

A differential cohomology theory is not assumed to be homotopy invariant, but retains the other properties above. It is represented by a sheaf of spectra E: $Mfd^{op} \rightarrow Spectra$ with $E^n(M) = \pi_{-n}(E(M))$.

Examples:

- (1) Ordinary generalized cohomology theories (proven by Dugger).
- (2) Let Ω be for differential forms. Then

$$(D_2\mathbb{R})^n(M) = \begin{cases} 0 & \text{if } n < 2\\ \Omega_{df}^2 M & \text{if } n = 2\\ H^n(M,\mathbb{R}) & \text{otherwise} \end{cases}$$

is an example.

Date: April 9, 2014. Prepared by David White, Wesleyan University.

(3) Let $\widehat{H}^2(M,\mathbb{Z})$ be iso classes of line bundles with connections. Then

$$(D_2\mathbb{Z})^n(M) = \begin{cases} H^{n-1}(M, \mathbb{R}/\mathbb{Z}) & \text{if } n < 2\\ \widehat{H}^2(M, \mathbb{Z}) & \text{if } n = 2\\ H^n(M, \mathbb{Z}) & \text{otherwise} \end{cases}$$

is an example. It's represented by Cheeger-Simons. Furthermore, the following commutes

$$D_{2}\mathbb{Z} \longrightarrow D_{2}\mathbb{R}$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$H^{*}(-,\mathbb{Z}) \longrightarrow H^{*}(-,\mathbb{R})$$

$$(4) \ (D_{0}K)^{n}(M) = \begin{cases} K^{-n+1}(M,\mathbb{R}/\mathbb{Z}) & \text{if } n < 0 \\ \widehat{K}^{0}(M) & \text{if } n = 0 \\ K^{n}(M) & \text{otherwise} \end{cases}$$

(5) Let *A* be a chain complex over \mathbb{R} . Let $h \in \mathbb{Z}$

$$D_n A = \begin{cases} 0 & \text{if } n < h \\ Z^h(\widetilde{\Omega}^*(M, A)) & \text{if } n = h \\ \widetilde{H}^h(M, A) & \text{otherwise} \end{cases}$$

(6) $E^n(M) = K_*^{alg} C^{\infty}(M, \mathbb{C})$. Note: this one does not satisfy Mayer-Vietoris. You can tweak it to do so by sheafifying. Note that $E^*(pt) = 0$ so this *E* is called *pure*.

Theorem 1.1 (Bunke-Nikolaus-Völkl). *Given E, there is a universal homotopification* $E \rightarrow hE$.

When M is compact, we have a formula $(hE)(M) = \operatorname{colim}_{\Delta} E(M \times \Delta^{\bullet})$

There is a universal pure $E \rightarrow pE$.

There is a pushout square

$$E \longrightarrow hE$$

$$\downarrow \qquad \qquad \downarrow$$

$$pE \longrightarrow hpE$$

The underlying ∞ -category theory has been worked out by Urs Schreiber.

It's almost completely formal, but does not hold for \mathbb{A}^1 -homotopy theory.

Examples

- (1) Trivial
- (2) $pD_2\mathbb{R} = D_2\mathbb{R}, hD_2\mathbb{R} \cong H^n_{dR}(-,\mathbb{R})$

2

D =

- (3) $pD_2\mathbb{Z} = D_2\mathbb{R}, hD_2\mathbb{Z} \cong H^n(-,\mathbb{R})$
- (4) skip
- (5) skip
- (6) hE = KU, pE fits in a cofiber sequence $K^{alg}\mathbb{C} \to E \to pE$, and hpE sits in a cofiber sequence $K^{alg}\mathbb{C} \to ku \to hpE$

2. Refinements of differential cohomology theories

One can use the work of Hopkins-Singer, Freed to find refinements of ring spectra.

Let *R* be a spectrum, *A* a chain complex over \mathbb{R} , and an equivalence $c : R \wedge H\mathbb{R} \to HA$.

For example, if R = KU, $A = \mathbb{R}[\zeta, \zeta^{-1}]$ then this is useful.

Now let \widehat{R}_h be a differential cohomology theory (so we have a family as *h* runs through \mathbb{Z}). Then take *R* to be $h\widehat{R}_h$ and take $p\widehat{R}_h = D_hA$. Now we simply need the maps $E \to hE$ and $E \to pE$ for this example. These maps can be obtained via

$$R^n(M) \to R^n(M, \mathbb{R}) \xrightarrow{c} H^n(M, A) \cong H^n_{dR}(M, A) = (hD_hA)^n(M)$$

Remark: of the family above we only care about one homotopy group. The rest of the theories are just there to ensure the Mayer-Vietoris condition.

Defn: $\widehat{R}^n(M) = \widehat{R}^n_n(M)$ is the refinement of the differential cohomology theory *R*.

Gepner-Bunke give functorial input

$$\begin{array}{c} R \longrightarrow R' \\ \downarrow & \downarrow \\ HA \longrightarrow HA' \end{array}$$

where the vertical maps are given by *c* and *A* should be thought of as $\pi_*(R) \otimes \mathbb{R}$. This is used to get $\widehat{R} \to \widehat{R'}$.

For example, the map $MS pin \to KO$ gives a refinement $\widehat{MSpin} \to \widehat{KO}$.

We are now prepared to do integration theory. Let $H \in \widehat{H}^3(M, \mathbb{Z})$ and $f : \Sigma \to M$. Then \int_c gives the map $f^*H \in \widehat{H}^3(\Sigma) \to \widehat{H}^n(pt) = \mathbb{R}/\mathbb{Z}$.

Many authors have worked this out for ordinary cohomology theories and *K*-theory. Bunke did it in complete generality.

THOMAS NIKOLAUS

3. Twisting

If R is E_{∞} then a *twist* on M is a 1-1 assignment of any nice, invertible sheaf of R-modules over M to a map $M \rightarrow Pic_R$. Call it τ .

Given τ we can define $R^{\tau}(M) = \pi_0(\tau(M))$.

Defn: On the data (R, A, c), a *differential* twist over M is

- a topological twist τ

- a flat invertible sheaf \mathcal{M} of DG-modules over $\Omega^*(-, A)$

- An equivalence $b: \tau \wedge H\mathbb{R} \xrightarrow{\sim} H\mathcal{M}$ called the twisted deRham isomorphism.

Think of this equivalence as $R^{\tau}(M) \otimes \mathbb{R} \to H^0_{dR}(\mathcal{M}(M))$

Proposition 3.1. *There is a good theory of integration in this setting.*

Examples of producing twisted deRham isomorphisms from actual geometric data.

- (1) Let \mathcal{A} be a system of A. Let $\mathcal{M} = \Omega^0(-, \mathcal{A})$. Let $R = KU, A = \mathbb{R}\langle \zeta, \zeta^{-1} \rangle$, and L a flat line bundle. Then $\mathcal{M} = SC(-, L)$ where SC is for super-connections.
- (2) Let $w \in Z^1(\Omega^n(M, A))$

Let $R = KU, H \in \Omega^3(M), w = Hb$.

To find the equivalence b for the last example we need to classify all choices:

Theorem 3.2 (Bunke-Nikolaus). Let *R* be a nice spectrum (e.g. KU, KO, TMF, ku, ko, MSO, MSpin,...). Every topological twist admits a refinement to a differential (with $\mathcal{M} = \mathcal{M}(L, w)$). Furthermore, the refinement is unique (but non-canonical).

The proof is basically brute force. You must use the twisted Atiyah-Hirzebruch spectral sequence, prove only one differential matters, and then compute.

Corollary: $\widehat{R}^{\tau,\mathcal{M},\mathcal{R}}(M)$ only depends on τ .

Example:

When $R = KU, [b] \in H^3(M)$. Then you have $M \to K(\mathbb{Z}, 3) \to Pic_{KU}$ taking *M*-graded gerbes to topological twists on *M*. Let E_g denote the image of *g*.

Similarly, gerbes with connection are taken to differential twists on *M*. We denote this passage $(g, B, A) \rightarrow (E_g, \Omega^n(M)[\zeta, \zeta^{-1}], \sim)$.

Note: The connections on a given gerbe are a torsor over some $\mathbb{Z}/2$ -lattice. One can use this to compute $\widehat{\mathscr{G}}$.

You can also investigate integration with respect to other orientations, e.g. given by maps $K(\mathbb{Z}, 2) \to KU$, $K(\mathbb{Z}, 3) \to tmf$, $K(\mathbb{Z}, n + 1) \to E(n)$.

Hopefully these foundations will be useful for Chern-Weil computations.