ASPECTS OF DIFFERENTIAL COHOMOLOGY

THOMAS NIKOLAUS

Abstract. A differential cohomology theory is differential geometric refinement of a generalized cohomology theory (in the sense of algebraic topology). Examples naturally arise in physics or in the study of secondary invariants (e.g. Chern-Simons invariants). We discuss this notion from a higher categorical point of view. This leads to a natural decomposition of any differential cohomology theory which we illustrate with many examples. Moreover we show how to obtain a good integration theory and a notion of twisted differential cohomology and discuss some aspects and examples.

This was a chalk talk. The speaker decided not to share his hand-written lecture notes.

Advertisement: Conference on Modular Invariants in Topology and Analysis, 8-12 September 2014, Regensburg.

1. Definitions and examples

A *cohomology theory* is a functor from smooth manifolds to graded abelian groups which satisfies Mayer-Vietoris, takes coproducts to products, and has $E^*(M \times I) \cong$ $E^*(M)$ (i.e. it's homotopy invariant). We assume these are represented by spectra.

A *di*ff*erential cohomology theory* is not assumed to be homotopy invariant, but retains the other properties above. It is represented by a sheaf of spectra *E* : $Mfd^{op} \to S$ *pectra* with $E^n(M) = \pi_{-n}(E(M)).$

Examples:

- (1) Ordinary generalized cohomology theories (proven by Dugger).
- (2) Let Ω be for differential forms. Then

$$
(D_2 \mathbb{R})^n(M) = \begin{cases} 0 & \text{if } n < 2\\ \Omega_{df}^2 M & \text{if } n = 2\\ H^n(M, \mathbb{R}) & \text{otherwise} \end{cases}
$$

is an example.

Date: April 9, 2014. Prepared by David White, Wesleyan University.

(3) Let $\widehat{H}^2(M,\mathbb{Z})$ be iso classes of line bundles with connections. Then

$$
(D_2\mathbb{Z})^n(M) = \begin{cases} H^{n-1}(M, \mathbb{R}/\mathbb{Z}) & \text{if } n < 2\\ \widehat{H}^2(M, \mathbb{Z}) & \text{if } n = 2\\ H^n(M, \mathbb{Z}) & \text{otherwise} \end{cases}
$$

is an example. It's represented by Cheeger-Simons. Furthermore, the following commutes

$$
D_2 \mathbb{Z} \longrightarrow D_2 \mathbb{R}
$$
\n
$$
H^*(-, \mathbb{Z}) \longrightarrow H^*(-, \mathbb{R})
$$
\n
$$
(4) (D_0 K)^n (M) = \begin{cases} K^{-n+1}(M, \mathbb{R}/\mathbb{Z}) & \text{if } n < 0 \\ \widehat{K}^0(M) & \text{if } n = 0 \\ K^n(M) & \text{otherwise} \end{cases}
$$

 \overline{D}

(5) Let *A* be a chain complex over \mathbb{R} . Let $h \in \mathbb{Z}$

$$
D_n A = \begin{cases} 0 & \text{if } n < h \\ Z^h(\widetilde{\Omega}^*(M, A)) & \text{if } n = h \\ \widetilde{H}^h(M, A) & \text{otherwise} \end{cases}
$$

(6) $E^{n}(M) = K_{*}^{alg} C^{\infty}(M, \mathbb{C})$. Note: this one does not satisfy Mayer-Vietoris.
You can tweak it to do so by sheafifying. Note that $F^{*}(nt) = 0$ so this *F* is You can tweak it to do so by sheaftfying. Note that $E^*(pt) = 0$ so this *E* is called *pure*.

Theorem 1.1 (Bunke-Nikolaus-Völkl). Given E, there is a universal homotopifi*cation* $E \rightarrow hE$.

When M is compact, we have a formula $(hE)(M) = \text{colim}_{\Delta} E(M \times \Delta^{\bullet})$

There is a universal pure $E \rightarrow pE$.

There is a pushout square

$$
E \longrightarrow hE
$$

\n
$$
\downarrow \qquad \qquad \downarrow
$$

\n
$$
pE \longrightarrow hpE
$$

The underlying ∞-category theory has been worked out by Urs Schreiber.

It's almost completely formal, but does not hold for \mathbb{A}^1 -homotopy theory.

Examples

- (1) Trivial
- (2) $pD_2\mathbb{R} = D_2\mathbb{R}, hD_2\mathbb{R} \cong H_{dR}^n(-, \mathbb{R})$

- (3) $pD_2\mathbb{Z} = D_2\mathbb{R}, hD_2\mathbb{Z} \cong H^n(-, \mathbb{R})$
- (4) skip
- (5) skip
- (6) $hE = KU$, pE fits in a cofiber sequence $K^{alg} \mathbb{C} \rightarrow E \rightarrow pE$, and $h pE$ sits in a cofiber sequence $K^{alg} \mathbb{C} \to ku \to hpE$

2. Refinements of differential cohomology theories

One can use the work of Hopkins-Singer, Freed to find refinements of ring spectra.

Let *R* be a spectrum, *A* a chain complex over R, and an equivalence $c : R \wedge H\mathbb{R} \to$ *HA*.

For example, if $R = KU$, $A = \mathbb{R}[\zeta, \zeta^{-1}]$ then this is useful.

Now let \widehat{R}_h be a differential cohomology theory (so we have a family as *h* runs through \mathbb{Z}). Then take *R* to be $h\hat{R}_h$ and take $p\hat{R}_h = D_hA$. Now we simply need the maps $E \to hE$ and $E \to pE$ for this example. These maps can be obtained via

$$
R^{n}(M) \to R^{n}(M, \mathbb{R}) \stackrel{c}{\to} H^{n}(M, A) \cong H^{n}_{dR}(M, A) = (hD_{h}A)^{n}(M)
$$

Remark: of the family above we only care about one homotopy group. The rest of the theories are just there to ensure the Mayer-Vietoris condition.

Defn: $\widehat{R}^n(M) = \widehat{R}^n_n(M)$ is the refinement of the differential cohomology theory *R*.

Gepner-Bunke give functorial input

$$
R \longrightarrow R'
$$

\n
$$
H A \longrightarrow H A'
$$

where the vertical maps are given by *c* and *A* should be thought of as $\pi_*(R) \otimes \mathbb{R}$. This is used to get $\widehat{R} \to \widehat{R}'$.

For example, the map *MS pin* $\rightarrow KO$ gives a refinement \widehat{MS} *pin* $\rightarrow \widehat{KO}$.

We are now prepared to do integration theory. Let $H \in \widehat{H}^3(M, \mathbb{Z})$ and $f : \Sigma \to M$.
Then \int gives the man $f^*H \in \widehat{H}^3(\Sigma) \to \widehat{H}^n(nt) - \mathbb{P}^{1/2}$ Then \int_c gives the map $f^*H \in \widehat{H}^3(\Sigma) \to \widehat{H}^n(pt) = \mathbb{R}/\mathbb{Z}$.

Many authors have worked this out for ordinary cohomology theories and *K*theory. Bunke did it in complete generality.

4 THOMAS NIKOLAUS

3. Twisting

If *R* is E_{∞} then a *twist* on *M* is a 1-1 assignment of any nice, invertible sheaf of *R*-modules over *M* to a map $M \rightarrow Pic_R$. Call it τ .

Given τ we can define $R^{\tau}(M) = \pi_0(\tau(M)).$

Defn: On the data (*R*, *^A*, *^c*), a *di*ff*erential* twist over *^M* is

- a topological twist τ

- a flat invertible sheaf M of DG-modules over $\Omega^*(-, A)$
An equivalence $h : \pi A H\mathbb{R} \longrightarrow H M$ called the twisted del-

- An equivalence *^b* : τ∧*H*^R [∼][→] *^H*^M called the twisted deRham isomorphism.

Think of this equivalence as $R^{\tau}(M) \otimes \mathbb{R} \to H^0_{dR}(\mathcal{M}(M))$

Proposition 3.1. *There is a good theory of integration in this setting.*

Examples of producing twisted deRham isomorphisms from actual geometric data.

- (1) Let \mathcal{A} be a system of *A*. Let $M = \Omega^0(-, \mathcal{A})$. Let $R = KU, A = \mathbb{R}\langle \zeta, \zeta^{-1} \rangle$, and *I* a flat line bundle. Then $M = SC(-I)$ where SC is for superand *L* a flat line bundle. Then $M = SC(-, L)$ where SC is for superconnections.
- (2) Let *w* ∈ *Z*¹(Ω^{*n*}(*M*,*A*))

Let $R = KU, H \in \Omega^3(M), w = Hb.$

To find the equivalence *b* for the last example we need to classify all choices:

Theorem 3.2 (Bunke-Nikolaus). *Let R be a nice spectrum (e.g. KU, KO, TMF, ku, ko, MSO, MSpin,...). Every topological twist admits a refinement to a di*ff*erential (with* $M = M(L, w)$ *). Furthermore, the refinement is unique (but non-canonical).*

The proof is basically brute force. You must use the twisted Atiyah-Hirzebruch spectral sequence, prove only one differential matters, and then compute.

Corollary: $\widehat{R}^{\tau,M,\mathcal{A}}(M)$ only depends on τ .

Example:

When $R = KU$, $[b] \in H^3(M)$. Then you have $M \to K(\mathbb{Z}, 3) \to Pic_{KU}$ taking *M*-graded gerbes to topological twists on *M*. Let *F* denote the image of *g M*-graded gerbes to topological twists on *M*. Let E_g denote the image of *g*.

Similarly, gerbes with connection are taken to differential twists on *M*. We denote this passage $(g, B, A) \rightarrow (E_g, \Omega^n(M)[\zeta, \zeta^{-1}], \sim).$

Note: The connections on a given gerbe are a torsor over some $\mathbb{Z}/2$ -lattice. One can use this to compute \mathscr{G} .

You can also investigate integration with respect to other orientations, e.g. given by maps $K(\mathbb{Z}, 2) \to KU$, $K(\mathbb{Z}, 3) \to tmf$, $K(\mathbb{Z}, n + 1) \to E(n)$.

Hopefully these foundations will be useful for Chern-Weil computations.