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Abstract. Higher categories are playing an increasingly important role in al-
gebraic topology and mathematics more generally. Due to their diverse origins
there are many competing approaches to the theory. In this talk I will describe
joint work with Clark Barwick which gives a solution to the comparison problem
in higher category theory. We give a brief axiomatization of the theory of (∞, n)-
categories (and other closely related theories). From this we show that the space
of homotopy theories satisfying these axioms is B(Z/2)n, and hence any two the-
ories satisfying the axioms are equivalent with very little ambiguity in how they
are equivalent. Examples of popular theories which satisfy these axioms will be
provided along with a spattering of applications.

There will be no notes from the speaker because this material is contained in the
(expository) last section of the lecture notes hosted as arxiv 1308.3574.

The notes presented here should be seen mainly as a supplement to the notes
above.

1. History

Mac Lane’s coherence theorem tells you that you can always replace a weak 2-
category by a strict 2-category. Ross and Street tried to do the same for 3-categories
in 1995, and it turns out you can’t. Batanin also came up with an idea for what a
weak 3-category should be, as did two other independent teams of researchers.

There are strict 2-categories, opetopic 2-categories, and 2-relative categories.

Let A be a category. Then σ(A) is a 2-category where A sits between the 0-cells 0
and 1. So Hom(0, 0) = pt = Hom(1, 1), Hom(0, 1) = A, Hom(1, 0) = ∅.

Opetopic 2-categories have a certain horn-filling property via universal arrows.

2-relative categories are simply diagrams
v1C // aC

wC

OO

// v2C

OO
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where all objects in the diagram are categories (all on the same objects) and all
maps are inclusions. Every morphism of aC is a finite composite of viC’s. The
only relations are given by composition rules f2 ◦ g1 = g2 ◦ f1 where g1, g2 ∈ viC

and f1, f2 ∈ v jC.

The point is that there were many options when homotopy theorists wanted to
define ∞-categories. In this talk we’ll axiomatize the notion and prove that any
approach which satisfies the axioms is equivalent to the other approaches. By
analogy, think about the Eilenberg-Steenrod axioms.

Another analogy is given by May-Thomason’s uniqueness of infinite delooping
machines. They first choose to work in a single theory (Segal’s theory) and then
compare all the other theories to that theory via an axiomatization.

More details on May-Thomason: Given an E∞ operad they produce a new cate-
gory which we’ll call MT (E∞), whose morphism spaces are built using E∞. This
category MT (E∞) is equivalent to Segal’s category Γ, which is MT of the termi-
nal operad. Let Π denote MT of the initial operad. It should be thought of as
‘Segal maps.’ If E∞ is levelwise equivalent to the terminal operad then you’ll get
comparison maps between their algebras. There is a standard way to get from Γ

to connective spectra, and this allows for a functor from MT (E∞) to connective
spectra. It turns out that the images of this functor for different E∞’s in fact coin-
cide.

The lesson we draw from this is that it’s important to have a place to work where
all the models live and can be compared.

2. Different choices for the homotopy theory of homotopy theories

We want our answer to have function objects of the same type, i.e. a way to ddo
homotopy theory on the maps between two homotopy theories. As a result, we
reject model categories because functors between two model categories need not
be a model category.

RelCat is the collection of categories C with a distinguished subcategory W on
the same objects (and containing all identity maps). Even in RelCat it’s hard to
formulate function objects.

Cat∆ is the collection of simplicial categories. Hammock Localization LH takes
you from RelCat to Cat∆. Note that Cat∆ contains more information than simply
categories enriched in Ho(Top), i.e. categories whose spaces are n-types.

CSS is complete Segal spaces (introduced by Rezk as a model for the homotopy
theory of homotopy theories). The classification diagram functor goes from RelCat
to CSS.

S egin j and S egpro j are two model structures on the category of Segal categories
(both introduced by Bergner).
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There are other options too, most notably quasi-categories, which is the setting we
work in to compare the others.

Recall from Angelica’s talk that (groupoids, categorical equivalences)' 1-types.
The more general version of this is the Homotopy Hypothesis, which states (weak
n-groupoids, equivalences) ' n-types. So letting n→ ∞ says (∞, 0)-categories are
supposed to be the same thing as spaces.

We think of weak n-groupoids as (n + k, n)-categories, i.e. n + k-categories where
everything is invertible above dimension n. Note that an (n, n)-category is the same
as a weak n-category, and an (n, 0)-category is an n-groupoid. An (∞, 1)-category
is an∞-category (i.e. has n-morphisms for all n) and morphisms between any two
objects form an (∞, 0)-category, i.e. a space.

qCat is an implementation of (∞, 1)-categories. Thanks to Joyal, Lurie, and others
this is the setting with the most machinery already in place to do our compari-
son.

All the collections of categories discussed in this section are model categories, and
all are Quillen equivalent through a zig-zag. There is a great picture in the unicity
paper’s introduction which contains these models and Quillen equivalences (the
right adjoints only) between them.

Julie Bergner has shown that two different ways of going from Cat∆ to CSS are
equivalent up to a long zig-zag in CSS. Proving this in general is hard. In partic-
ular, it was unknown that this diagram of models and Quillen equivalences com-
muted. The point of this work is to prove that all these Quillen equivalences are
coherent and that in particular the diagram commutes. This solves the ‘monodromy
problem’ of taking different paths around the diagram.

Furthermore, any other reasonable model you might propose will also be equivalent
to qCat. By ‘reasonable model’ we mean satisfying some axioms.

3. Axiomatization

There is a huge simplicial set whose vertices are quasi-categories satisfying the
axioms, the 1-simplices are equivalences of quasi-categories, and whose higher
simplices have explicit descriptions which we will not discuss.

Theorem 3.1. This simplicial set is a Kan complex and is a B(Z/2)n.

The Z/2 is there because you can always take an n-category to it’s opposite. Indeed,
you can flip around any of the k-morphisms for k < n and you get 2n different such
images of an (∞, n)-category (all of which are equivalent to the original (∞, n)-
category in a strong way).

The method of proof of the unicity theorem is to introduce the category of 0-
truncated objects τ≤0C ⊂ C. The objects X satisfy the property that C(Y, X) is
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a discrete space. So these X are the ones without any interesting homotopy the-
ory.

For example, τ≤0Top is just S et (a.k.a. 0-types). Less trivially, τ≤0Cat is the
subcollection of categories where the only isomorphisms are identities. Let Gaunt1
denote τ≤0Cat. To see this, consider that Fun0(C,D) is the 1-groupoid of invertible
functors between C andD. If C is a point then Fun0(C,D) is the maximal groupoid
in D. If D is to be in the truncation then this groupoid must be a discrete space,
i.e. have only identity maps.

Axioms for C to be a presentable theory of (∞, n)-categories

First Axiom: τ≤0 ' Gauntn and this strongly generates C, i.e. for all X ∈ C:

hocolimD∈Gauntn,D→X
'
→ X

Second Axiom: cells detect equivalences, i.e. for any X ∈ C then f : X ' Y iff
C(Ci, X) ' C(Ci,Y) for all cells Ci. Also, cells have internal homs. Equivalently,
the functor X ×Ci − : C/Ci → C preserves homotopy colimits.

Third Axiom: In C a certain finite list of colimit equations is satisfied. These are
obvious if you read up on Θn-spaces.

Fourth Axiom: C is universal with respect to the list above, i.e. if D satisfies the
axiom then there’s a localization L : C → D.

Note that all the axioms are satisfied by all the known examples discussed in this
talk, as well as by Θn-spaces (so in particular Θn-spaces and CSSn are equiva-
lent).

4. Q & A

As soon as the first condition is satisfied you can classify models with a certain
property via localizations which preserve gaunts. For example, you can axiomatize
stable (∞, n)-categories.

There are also axioms for (n, n)-categories. It’s all the same axioms as above, but
with one more colimit equation in the third axiom.
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