
Clark Barwick: Redshift and higher categories

Today, we’ll talk about the redshift conjectures. Morally, these say that invariants like K-theory increase chromatic
complexity. We’ll begin by trying to make this a little more precise.

Definition 1. A spectrum E is of telescopic complexity ≤ n at the prime p if, for any p-local finite spectrum V of

type ≥ n, π∗V ∧ E
∼=−→ π∗T ∧ E for ∗ � 0, where T = Tel(vn), the unique mapping telescope of a vn-self map

Note that the thick subcategory theorem implies that every spectrum has a telescopic complexity, and moreover
that that telescopic complexity is unique.

Now, here is a conjecture.

Conjecture 1. The iterated K-theory K(n)(C) = K(K(· · · (K(C)) · · · )) has telescopic complexity exactly n at every
prime p.

We immediately remark that we have the following theorem in this direction.

Theorem 1 (Suslin, Baas–Dundas–Richter–Rognes). This is true for n ≤ 2.

Note that K(C) is just KU , or rather this is true after p-completion (and possibly taking connective covers?).
Then, K(ku) is a form of elliptic cohomology, i.e. it has telescopic complexity 2.

We believe that we currently have the tools to solve this conjecture. Today, we’ll address the sub-question:
What are the operations on K(n)(C)? (This is all joint work with Saul Glasman.)

We first remark that we can consider C as an E∞-ring spectrum (lol), and so these iterated K-theories are all
sensible – they’re E∞-rings too.

We now begin with an algebraic digression. Let us attempt to understand the endomorphisms of the forgetful
functor U : AlgC → Set. Since this is representable, we find that End(U) ∼= U(C[x]). This is an isomorphism of
rings, first of all. But formal nonsense implies that C[x] must also admit a co-C-algebra structure (in C-algebras),
and with this structure it represents the identity functor. But then, there’s even more structure: if we have two
morphisms we can compose them, and this yields a monoid structure on C[x], given by composition of functions:
(p, q) 7→ p ◦ q. (Given A ∈ AlgC, p ∈ C[x] acts on UA by a 7→ p(a).)

This all leads us to the following definition.

Definition 2 (Borger–Wieland, following Tall–Wraith). A plethory over a ring R (or an R-plethory) is a co-R-
algebra P in R-algebras, along with a monoid structure that enhances the functor WP : AlgR → AlgR into a
comonad.

These form a category, and it’s actually not hard to see that C[x] is the initial C-plethory.

There are other examples of plethories; we give some now.

Example 1. Define Λ to be the algebra of symmetric functions (say over Z). Its comonad (i.e. composition)
structure is essentially what’s called the Artin–Hesse map. Inside of here we have the “p-typical” part Λ(p).

We will see the relevance of these examples shortly. But we need one more observation. Note that C[x] acts
simultaneously on all the C-algebras, so it makes sense to ask for an action of a plethory. This motivates the
following.

Definition 3. An algebra over a plethory P is a coalgebra over WP .

Example 2. Since C[x] acts on all C-algebras in a unique way, every C-algebra admits a unique structure of an
algebra over the plethory C[x].

We can now explain the notation.

Example 3. WΛ(A) is the ring of big Witt vectors on A; in this language, a Λ-algebra is precisely a λ-algebra!
Moreover, WΛ(p)(A) is of course the ring of p-typical Witt vectors, and a Λ(p)-algebra is a “δ ring relative to p”
(following Joyal’s terminology) or a “θp-algebra” (following Bousfield).
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Now, we can celebrate the fact that we have new foundations for algebraic topology. Nothing changes if we’re
sufficiently categorical; we can replace abelian groups with spectra, rings with E∞-ring spectra, etc. In fact, we can
even categorify this story, which is what we’ll do now.

However, rather than try to construct sophisticated examples, we’ll simply muse on the generalities.

Definition 4. We define PerfC to be the ((∞, 1)-)category of perfect HC-modules – that is, of HC-modules with
finitely many homotopy groups, all of which are finite-dimensional.

Note that PerfC is also symmetric monoidal, i.e. it’s a ring object in the (∞, 2)-category of (∞, 1)-categories.
In fact, this lives in Catrex(∞,1), the symmetric monoidal (∞, 2)-category of idempotent-complete (∞, 1)-categories

admitting all finite colimits (whose monoidal structure is the categorical tensor product, i.e. the object corepresenting
functors that preserve colimits in each variable (so one should think of the finite colimits as the “addition”)). And
so PerfC is a commutative algebra in this (∞, 2)-category.

Now, let’s run the same story as we did before. Namely, we look at the forgetful functor

U : CAlgPerfC := CAlg(Catrex(∞,1))PerfC/ → Cat(∞,1).

So, what is End(U)?

Example 4. Given any C-variety, the perfect complexes of quasicoherent sheaves will form an object of the source.

Now, we begin by looking for the free symmetric monoidal (∞, 1)-category – but this is just Σ, the 1-groupoid
of finite sets and automorphisms. Then, we want to understand the full subcategory PerfC[x] ⊂ Fun(Σ, PerfC)
spanned by those F such that F (I) = 0 for |I| � 0 (i.e., symmetric sequences that eventually peter out).

Since we’re looking at arbitrary functors Σ→ PerfC, this functor category has the Day convolution symmetric
monoidal structure. To describe this, suppose we have F,G : Σ→ PerfC. Then we define F ⊗G to be the left Kan
extension in the diagram

Σ× Σ
F ×G- PerfC × PerfC

Σ

⊗

?

F ⊗G
- PerfC.

⊗

?

(If one really hated their audience, they could write F ⊗G := ⊗!(⊗◦ (F ×G)).) We can also describe this explicitly:
(F ⊗G)(I) ∼= colimI∼=JtK F (J)⊗G(K).

Here is a result; we don’t know who to ascribe it to, but surely it’s been known for a long time.

Theorem 2. U(PerfC[x]) ∼= End(U).

This is for the same reason we discussed: this corepresents the forgetful functor. (In fact, note that the
composition on PerfC[x] is just the composition product of symmetric sequences!) From this, we get the following.

Corollary 1. PerfC[x] is the initial plethory in CAlgPerfC .

Good! Let’s take its K-theory. Here’s a theorem, which looks trivial but actually takes a lot of work to prove.

Theorem 3. The K-theory of a plethory is a plethory.

(K-theory behaves nicely with respect to algebraic structures, but not with respect to coalgebraic structures a
priori. Rather, this comes from its universal property.)

Thus, we obtain

CAlgPerfC
K−→ CAlgK(C),

and this takes plethories to plethories. Let’s find out where PerfC[x] goes. Let’s begin at level 0: we just have that
K0(PerfC[x]) = Λ. (This might be ultimately due to MacDonald, in an appendix to his book.) Let’s prove this.
We know that

K0(PerfC[x]) ∼= colimn

n⊕
i=1

K0(RepC[Σi]) ∼=
⊕
n≥0

Rep[Σn].
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The punchline is the following: categorification takes a trivial plethory to a nontrivial plethory. This is just like
redshift, which says that applying K-theory makes things more interesting!

Let’s continue by observing that Λ admits Adams operations; passing to Λ(p), we see that this contains a group
that’s dense in Z×p . Whereas we have PerfC[x] acting on PerfC, then we get an action of K(PerfC[x]) on K(C),
which reduces to the standard Adams operations action of Λ on K0(C). Completing at a prime p, we obtain
something we’ll call

K(PerfC[x])∧p =: kuλp.

After p-completion, the K-theory of any symmetric monoidal ∞-category has an action of this plethory. Moreover,
it’s not hard to compute: π∗kuλp = ku∗ ⊗ Λ∧p .

In our last few minutes, we’ll sketch how we go higher – not to n = 2, but to arbitrary n. To do this, we
just need to replace 1 with n and 2 with n + 1. So, we now consider Catrex(∞,n), the (∞, n + 1)-category of (∞, n)-

categories which are Morita-complete (the higher-categorical analog of idempotent-complete) and admit all finite

(∞, n)-colimits (in the lax sense). From this, we define Perf
(n)
C inductively: Perf

(0)
C = HC, and Perf

(n)
C is symmetric

monoidal (∞, 1)-category of dualizable modules over Perf
(n−1)
C ; that is,

Perf
(n)
C ∈ CAlg(Catrex(∞,n)).

Now, here’s a fact: K(n)(C) ' K(Perf
(n−1)
C ). (There’s a notion of K-theory for which the right side makes sense

and the equivalence is true.)

We can now attempt to classify all the operations here: the forgetful functor U : CAlg
Perf

(n−1)

C /
→ Cat(∞,n), and

we can take K(End(U)), and this will act canonically on the K-theory of any object of the source (in particular, its
initial object).

This is the part where we’d like to have a punch-line – we’d like to be able to even compute K0. But we can’t
do it, and we’d like to explain why. Down at n = 1, we had Maschke’s theorem, which allows us to decompose

the representations. But this fails at n = 2: we don’t know that we have this for Perf
(2)
C [x] (e.g. for “2-vector

spaces”). Thus, we end with a question: Is there a useful analog of Maschke’s theorem over PerfC? We do know

that K(Perf
(2)
C [x]) acts canonically on K(2)(C), which is supposed to be some form of elliptic cohomology. So

maybe we can’t compute all of K0, but it’s a plethory, and we can look for a submonoid that’s dense in the Morava
stabilizer group S2. For instance, Behrens–Lawson construct such a dense submonoid using isogenies of elliptic
curves. It’d be really great to see that appearing here.

David Ben-Zvi asks an interesting related question; watch the video online to hear about it (something about
Kac–Moody algebras and the failure of Maschke’s theorem in certain contexts).
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