
Vesna Stojanoska: Duality, algebro-homotopically

We begin with R being a commutative ring.

Definition 6. An R-module K is called dualizing if:

1. for all M ∈ ModR finitely generated, M
∼−→ HomR(HomR(M,K),K); and

2. K has finite injective dimension over R.

The second condition means that in the derived setting, the first condition has good finiteness properties: if M
is suitably connective, then HomR(M,K) is bounded above. (Note that for instance, in spectra, we just need to
check the first condition on M = S0.)

When R is an E∞-ring, we add the following condition:

3. for all i, πiK is finitely generated over π0R.

However, we also need to be careful with condition 2 in the case that R is nonconnective (for instance, if it’s
periodic).

A question from the audience: In algebraic geometry, one talks about the dualizing complex. Here, is there no
preferred choice? Answer: There is a preferred choice in the relative context.

Example 8. For R = k a field, Hk is a dualizing Hk-module.

Example 9. For R = S0, S0 is not dualizing over itself: it doesn’t have finite injective dimension. However,
we happen to know another spectrum that is dualizing: the Anderson dualizing spectrum IZ is a dualizing spec-
trum. Then, for X any spectrum, we can compute π∗IZX from π∗X via a spectral sequence ExtsZ(πtX,Z) ⇒
π−t−sF(X, IZ) = π−t−sIZX. This comes from the fiber sequence IZ → HQ → IQ/Z (where the last term is the
Brown–Comenetz dualizing spectrum).

Let’s return to the question of when R is nonconnective. We can try to fix the definition as follows.

1. Find what adjunctions result from a spectrum being dualizing, and then just take those as the definitions.

2. We can use a “local” approach (this was especially pursued by Dwyer–Greenlees–Iyengar).

Here are a few questions [ed.: actually just one].

1. Q.: Why do we care? A1.: Why not?? Dualities are always exciting! A2.: According to a remark of Dan
Freed, Anderson duality actually appears in nature. A3.: As we’ll see, one can use duality in computations
of Hopkins’s K(n)-local Picard groups.

Let’s return to attempted definition fix 1. Suppose that we have a map f : X → Y (of schemes, stacks, ...). This
gives us a “relative global sections” functor f∗ : ModOX → ModOY . This always has a left adjoint f∗, and in special
situations it also has a right adjoint f !. In such cases (and additionally if f∗ is faithful), we can build duality on X
using duality on Y . More precisely, if KY is a dualizing OY -module, then f !KY will be a dualizing OX -module.

Now, suppose we have some derived algebro-geometric object X = (X,OderX ). The terminal object is SpecS0,
and since we have duality in that case, we can often pull this back to duality on X.

Example 10. Serre computed that the terminal map f : Pn → SpecZ admits f !, and moreover f !Z ∼= ΛnΩPn ∼=
O(−n− 1) (the sheaf on Pn associated to Σ−(n+1)Z[x0, . . . , xn], considering Pn := Proj Z[x0, . . . , xn]).

Here’s an upside: dualizing modules are uniformly described, since Kahler differentials have nothing to do with
duality a priori.

But here’s a downside: if you add stacky points to something with duality, you’ll ruin the duality. This is
because adding stackiness introduces group cohomology to computations, and (even in the finite group case) this
is infinite-dimensional, which makes us lose track of dualities.

We should see the previous example as an advertisement for derived algebraic geometry. The downside becomes
an upside: if we add stacky points that come from Mfg, this fixes the problem. (This is just a heuristic, but it’s
strongly supported especially by recent work of Mathew–Meier.) We will explain this more through a sequence of
examples.
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Example 11. Let’s take the simplest possible nontrivial group: BC2
f0−→ SpecZ. There’s a homotopical refinement

of this: BC2 admits an even-periodic spectrification to KU , which we’ll denote by (X,OX) = (BC2,KU), and

we replace SpecZ by SpecS0 to get (BC2,KU)
f−→ SpecS0. Now, (f0)∗ is way more poorly behaved than f∗.

Now, note that OX -modules are like KU -modules with a compatible C2-action, i.e. KO-modules. By joint work
with Drew Heard, the right adjoint f ! of f∗ is such that f !(A) = F(KU,A) ' F(IZA,Σ

4KU) (an equivalence of
C2-equivariant spectra). The key to the prove is the norm equivalence KUhC2

∼−→ KUhC2 . (The obstructions to
this equivalence vanish, since they live in the gap in π∗KO.)

Example 12. Consider (Mell,ODer)
f−→ SpecS0. By Mathew–Meier, f∗ has a right adjoint (since the source

actually behaves affinely, at least as far as quasicoherent sheaves are concerned). In our thesis, we showed that
f !IZ ' Σ21Oder. To get an analog of the theorem above, though, we need to build in e-DAG. This will be harder
than what Mike Hill was talking about, because we’ll want to work with M(n) → Mell, which has deck group
GL2(Z/n) (which is no longer cyclic).

We now say a bit about computations of Picn, the group of equivalence classes of K(n)-local smash-invertible
spectra. This always has an algebraic component Picalgn (in which the elements are entirely detected by their
completed En-homology), and for p � n this is everything but otherwise there is an extension by an exotic
component κn.

Now, Gross–Hopkins duality tells us that LK(n)IZ ∈ Picn. We can ask: Is this an exotic element? As can
be seen in Strickland’s note on Gross–Hopkins duality, writing In = LK(n)IQ/Z ' LK(n)(ΣIZ), we have that

En ∧ In ' Σn
2−nEn〈det〉, and this is algebraic.

Example 13. Our previous example with KU and KO shows that we have Z/2 ⊂ κ1 at p = 2. This is because if
I1 were algebraic, then (computing K(1)-locally) we’d have

Σ6KO ' ΣF(KO, I1) ' KO ∧ I1 ' (KU ∧ I1)hC2
∼?−−→ (Σ2KU)hC2 ' Σ2KO.

That is, KO would be 4-periodic, which is not true (even K(1)-locally).

Likewise, the fact that tmf is Anderson-self-dual up to a 21-fold suspension, that example implies that there is
Z/3 ⊂ κ2 at p = 3 (and we’re about 80% sure that we also have Z/8 ⊂ κ2 at p = 2).

Of course, one big goal from here is to get more of these sorts of examples at higher heights. A more challenging
goal is to actually get all of the κn’s by some general construction.

In the last few minutes, we’ll say a few words about doing duality “locally” (in the sense of Dwyer–Greenlees–
Iyengar). This is based on the theory of residual complexes. This is well-known in classical algebraic geometry, and
this is what DGI have made sense of in topology, but only locally thus far.

Example 14. Consider the diagram

SpecFp
xp−→ SpecZ ξ←− SpecQ.

Now, Q is an injective Z-module, and the injective hull of Fp is Z/p∞. So we can take the injective resolution

Q→
⊕
p

Z/p∞ ∼= Q/Z

as a dualizing complex.

Example 15. The previous example works also for curves. Say X → Spec k is a proper smooth curve. Call ξ its
generic point, and there we have the dualizing module Ω1

X,ξ. Similarly, we can construct

Ω1
X,ξ →

⊕
x∈X\{ξ}

Ω1
X,ξ/Ω

1
X,x.

This is again a dualizing complex.

One thing that’s a bit unclear to us about this story is that in homotopy theory we have lots of primes (the
Morava K-theories), and this suggests the following question: What are residual complexes in homotopy theory?
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