
Charles Rezk: Calculations in multiplicative stable homotopy theory at
height 2

We’ll give a broad overview, and then describe a calculation that you can get your hands on. There won’t be much
reimagining in this talk, and we apologize for that.

Definition 7. Recall that a formal group over a ring A is a formal scheme G with OG ∼= A[[x]], equipped with a
group structure (corresponding to OG → OG⊗̂AOG).

An isogeny is a map f : G→ G′ of formal groups such that the induced map f∗ : OG′ → OG is finite and locally
free.

In the case that f : G → G′ is an isogeny, we can define K = ker(f): this has OK ' OG ⊗OG′ A, and this will
be a finite commutative group scheme over A. We define the degree of f to be deg(f) = rkAOK .

Example 16. Here’s a non-example. Consider [p] : Ĝm → Ĝm over Z. Then [p]∗(x) = px + · · · + xp. This is not
an isogeny. However, applying − ⊗ Q turns this into an isogeny of degree 1, and applying ⊗Zp turns this into an
isogeny of degree p.

The moral is that we want our maps to be isogenies, and for this to happen we often need to restrict.

Example 17. Given Fp ⊂ A and G/A a formal group, we have F r : G→ (ϕr)∗G, defined locally by x 7→ xp
r

. This
is even better when A = k is a field. Then a degree-pr isogeny f : G→ G′ factors uniquely as

G
f - G′

(ϕr)∗G.

F r

?

∼
-

To go further, we’d like to talk about deformations.

Definition 8. Fix G0/k, for k a perfect field of characteristic p. Then [p] is an isogeny of degree pn (here n is
called the height of G0.) Then, we define a deformation structure to be, given a formal group G over a complete
local ring A, an element of the set D(G/A) = {(i, α) : i : k → A/m, α : i∗G0

∼−→ GA/m}.

Now, given an isogeny f : G → G′ over A, we can pullback deformation structures: we get f∗ : D(G/A) →
D(G′/A). This follows from the “unique factorization through an iterated Frobenius” result above: we have

i∗G0
F ′- (ϕr)∗i∗G0

GA/m

α ∼

?
- G′A/m.

∃! α′

?

So, f∗(i, α) = (i ◦ ϕr, α′).

Exercise 1. Check that for Fp ⊂ A, F∗ = ϕ∗ : D(G/A)→ D(ϕ∗G/A).

We would like to collect these deformations all together.

Definition 9. Fix G0. Given a complete local ring A, we have a category DefG0
(A), whose objects are pairs

(G/A, (i, α) ∈ D(G/A)), and whose morphisms are isogenies f : G → G′ that are compatible with the choice of
deformation structure. This is functorial in local homomorphisms: given g : A→ A′, we get g∗ : Def(A)→ Def(A′).
(This is covariant, but we think scheme-theoretically.)

Altogether, this is a functor Def : CpltLocRing→ Cat; we can think of this as a category-valued presheaf on a
certain category of formal schemes. This is not a (pre-)stack, because these need to be valued in groupoids; thus,
instead we call them (pre-)piles. (The terminology can be blamed on Matt Ando.)

9



Let us now talk about quasicoherent sheaves. The category QCoh(Def) is M = {MA,Mg}: for any complete local
ring A we want MA : Def(A)op → ModA, and for a local homomorphism g : A→ A′ we want a natural equivalence
Mg : A′ ⊗AMA

∼−→MA′ ◦ g∗. (These data should satisfy some coherence conditions, of course.)

Example 18. Define ω ∈ QCoh(Def) by ωA(G/A), the rank-1 A-module of invariant 1-forms. Associated to an
isogeny f : G→ G′, we simply pull back 1-forms from G′ to G.

Example 19. Here is a stupider example, deg ∈ QCoh(Def). Define degA(G/A) = A, and given f : G → G′ we
define f∗ to be multiplication by deg(f) ∈ Z.

Let us digress for a minute to talk about elliptic curves. We could replace complete local rings by schemes, we
could replace the formal groups with elliptic curves, and we could keep using isogenies. This gives us a pile Ellisog.
(One could also restrict to pth-power isogenies, giving Ellp−isog.) These have notions of quasicoherent sheaves, and
once again we can write down examples.

For instance, associated to an elliptic curves C/S we have Hk
dR(C/S) (the algebraic de Rham cohomology

sheaf over S). This yields a hypercohomology spectral sequence (a/k/a the “algebraic Hodge-to-de Rham spectral
sequence”) for Hk

dR ∈ QCoh(Ellisog). This actually degenerates, and we have H0
dR(C/S) ' OS , and we have an

exact sequence
0→ H0(Ω1

C/S) = ω → H1
dR(C/S)→ H1(OC/S) = ω−1 ⊗ deg→ 0.

We also can compute that H2
dR(C/S) ' deg (coming from the fundamental class on the elliptic curve).

In particular, we note that the above short exact sequence gives us a Hodge class, an element of Ext1
Ell(ω

−1 ⊗
deg, ω). We also get e.g. an element of Ext1

Ell
p−isog
C

(ω−1⊗deg, ω); this comes with an injection fromMFwt=2(Γ0(p))w=−1,

where w is the Atkin–Lehner involution and we’re picking out the (−1)-eigenspace. This takes E2,p(q) to the Hodge
class. (Here, E2,p(q) = E2(q)− pE2(qp), where E2(q) = (−1/12) +

∑
d|n dq

n.)

We remark that this should have something to do with viewing elliptic cohomology as an “ultracommutative”
global-equivariant ring. (This will require both e-DAG and plethories.)

Now, fix G0/k. We defined a set D(C/A); this carries a free action of Aut(G/A), and so in the category Def(A),
there is at most one isomorphism. Thus the quotient Def(A)→ Def(A)/ ∼ is actually an equivalence of categories.

Now, Def has a sort of grading, because we’ve got the notion of the degree of a morphism. We define Defr(A) to
be the subcategory whose morphisms all have degree r. Then, the objects of Def(A)/ ∼ are in 1-to-1 correspondence
with {(G ⊃ K), G ∈ Def0/ ∼} (for K a subgroup of degree pr), given by taking the kernel.

Theorem 4 (Lubin–Tate, Strickland). Def is representable: there exist complete local rings Ar that represent
Defr(A)/ ∼.

(The case r = 0 is due to Lubin–Tate, with A0
∼= Wpk[[u1, . . . , un−1]]; Strickland extended to the general case.

Namely, Ar is the object that classifies certain subgroups of formal groups.)

Theorem 5 (Morava, Goerss–Hopkins–Miller, Strickland). There is a unique commutative S-algebra E = EG0/k

such that E∗BΣpr/I ' Ar[u
±] for |u| = 2, where I is the ideal generated by transfers from proper subgroups

Σi × Σpr−i ( Σpr .

(Again, for r > 0 this is due to Strickland.) This all yields a graded category object {Ar} in CpltLocRingop.
Now, there is a correspondence between QCoh(Def) and a certain category of comodules, which takes M ∈ QCoh(Def)

to M ∈ ModA0 and the maps M
ψr−−→

∏
r≥0Ar ⊗A0 M .

This is all what we need to talk about power operations. Let R be a commutative, K(n)-local E-algebra. Then
(writing m = pr) we have the composite ring homomorphism

ψr : π0R
Pm−−→ π0R

BΣ+
m ' π0R⊗E0

E0BΣm → π0R⊗A0
Ar.

Thus, we can consider π0R ∈ QCoh(Def).

Now, there exists a category A = AG0
. In the language of Clark Barwick’s talk, this is the category of algebras

for a certain E∗-plethory. Roughly speaking, this comes from π∗ : CAlg(E)K(n) → Mod(E∗), and we can lift this
functor to π∗ : CAlg(E)K(n) → A. So, this is essentially a category of quasicoherent sheaves of (graded) rings on
Def, although there are some further conditions (including a “Frobenius congruence”). More precisely, A is an
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equivalence on p-torsion-free objects. In fact, A has free objects, and these happen to be p-torsion-free. So we can
actually reconstruct A from an understanding of QCoh(Def, Ring∗)Frb.

The idea of the Frb is as follows. Given R ∈ QCoh(Def, Ring) (with Fp ⊂ A) satisfies the Frobenius congruence
if, when we evaluate R to get RA(G, (i, α)), the degree-p Frobenius isogeny gives us

RA(ϕ∗G,F∗(i, α))
F−→ RA(G, (i, α)),

and the source of this map is

RA(ϕ∗G,F∗(i, α)) ' RA(ϕ∗G,ϕ∗(i, α)) ' Aϕ ⊗A RA(G, (i, α)).

This last object has the usual relative Frobenius down to RA(G, (i, α)), and R satisfies the Frobenius congruence
if this diagram commutes. (This essentially amounts to checking something mod p, which is why we call it a
“congruence”.)

Example 20. Let G0 = Ĝm/Fp. This has height 1. We have Ar = Zp, and QCoh(Def) is the category of Zp-modules
M with an action of the Adams operations. Then, QCoh(Def, Ring)Frb consists of rings R with an Adams operation
ψ such that ψ(x) ≡ xp mod p, and to keep track of this we simply add a function θ. These are called θ-rings, and
indeed, A is the category of graded θp-rings.

Remark 1. The data of the graded category object {Ar} (along with its extra structure) is in some sense quadratic:
it is completely determined by A1, the source and target maps s, t : A0 → A1, and a composition map A2 →
A1 ⊗A0

A1. Everything else is (co)generated by this data.

Remark 2. The category QCoh(Def) has finite homological dimension: in fact, it is 2n. Furthermore, there is a
“Koszul complex” way of building explicit resolutions. (For instance, at height 2 there’s a 3-term complex one can
use to compute Ext, as long as the underlying modules are projective over A0.) It turns out that one can build the
exactly same complex for elliptic curves.

Remark 3. Somewhat annoyingly, at heights at least 3, we only know proofs for both of the previous remarks that
go through topology (instead of staying in algebra).

We end with an example.

Example 21. Given R and F two augmented K(n)-local commutative E-algebras, there’s a spectral sequence

Es,t2 ⇒ πt−smapCAlg(E)/E
(R,F ).

If π∗R is even-concentrated and smooth, this E2-term is given by

E0,0
2 = HomA/π∗E (π∗R, π∗F ),

and for s > 0,
Es,t2 = ExtsQCoh(Def)(ω

−1 ⊗ Q̂(π∗R), ω(t−2)/2 ⊗ π∗F ).

Here’s an example result; this is a special case of a conjecture of Hopkins and Lurie (which may actually now
be a theorem).

Proposition 1. Let G0/F p have height 2. Then,

mapCAlg(S0)(Σ
∞
+ , E) ' F×p ×K(Zp, 3).

In this case, the spectral sequence degenerates. There’s E0,0
2 = F×p , and the Es,t2 vanishes otherwise except for

E1,4
2 = ExtQCoh(Def)(ω

−1⊗ deg, ω) ∼= Zp. This is actually generated by the Hodge class under the image of a natural
homomorphism from ExtQCoh(Ellisog) (of the same objects); this is visible in the work of Nick Katz.

One can also compute that mapCAlg(S0)(Σ
∞
+ Z, TMFp) ' Zcpp , where cp counts supersingular elliptic curves in a

certain way: cp = dimMFwt=2(Γ0(p))w=−1.
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CHARLES REZK

1. Isogenies

Formal group G/A:

OG ≈ A[[x]], x 7→ F (x1, x2) : OG → OG⊗̂AOG.
Isogeny: f : G→ G′ such that f ∗ : OG′ → OG is finite locally free.
=⇒ K = Ker(f), OK = OG ⊗OG′

A is finite locally free over A. deg(f) = rankAOK .

Example? Ĝm/Z.

[p] : Ĝm → Ĝm, [p]∗(x) = px+ · · ·+ xp.
Not an isogeny over Z. Over Q, isogeny of degree 1 (isomorphism). Over Zp, isogeny of

degree p.
Frobenius isogeny. Fp ⊆ A, any G/A,

F r : G→ (φr)∗G, x 7→ xp
r

,

degree pr. (φ : A→ A, φ(a) = ap.)
Over field k ⊇ Fp. Unique factorization (deg f = pr).

G
f

//

F r
""

G′

(φr)∗G

g

∼
;;

2. Deformations

Fix G0/k: k perfect char p, [p]G0 isogeny of degree pn. (Height n formal group.)
Deformation structures. Given G/A, A = complete local ring.

D(G/A) = { (i, α) | i : k → A/m, α : i∗G0
∼−→ GA/m }.

Isogeny f : G→ G′ over A =⇒ f∗ : D(G/A)→ D(G′/A):

i∗G0
F r
//

α ∼
��

(φr)∗i∗G0

∼ ∃! α′
��

GA/m
fA/m

// G′A/m

f∗((i, α)) = (iφr, α′).
Exercise. For Fp ⊆ A:

F∗ = φ∗ : D(G/A)→ D(φ∗G/A).

Date: April 12, 2014.
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Pile of deformation structures. Def = DefG0 . A complete local ring =⇒

Def(A) :=

{
obj : (G/A, (i, α) ∈ D(G/A)),

mor : f : G→ G′, f∗(i, α) = (i′, α′).

Local homomorphism g : A→ A′ =⇒ g∗ : Def(A)→ Def(A′).
Def: a presheaf of categories on {cpt loc rings}op. “Pile”.
Quasi-coherent sheaves on Def. Objects of QCoh(Def) are ({MA}, {Mg}):

A  MA : Def(A)op → ModA,

g : A→ A′  Mg : A′ ⊗AMA
∼−→MA′ ◦ g∗.

Coherence, etc.
Example. ω ∈ QCoh(Def).

ωA(G/A) := {invt 1-forms on G},
(rank 1 A-module). Forms pullback along homomorphisms.

Example. deg ∈ QCoh(Def).

degA(G/A) := A, f ∗ = mult. by deg(p) ∈ Z.

3. Digression: elliptic curves and isogenies

Formalism works more generally.
Pile of elliptic curves and isogenies. Ell.
Replace: complete local rings → schemes, formal groups and def str → ell curves, isog

preserving def str → all isogenies.
Or just isogenies of pth power degree: Ellp.
Example. Algebraic de Rham cohomology.

C/S 7→ Hk
dR(C/S), coh sheaf over S.

This is a functor, so gives object Hk
dR ∈ QCoh(Ell).

Hypercohomology ss (algebraic “Hodge to de Rham”).

H0
dR(C/S) ≈ OS,

0→ H0(ΩC/S)→ H1
dR(C/S)→ H1(OC/S)→ 0,

rewrite as
0→ ω → H1

dR(C/S)→ ω−1 ⊗ deg→ 0,

H2
dR(C/S) ≈ deg .

“Hodge class” in Ext1
Ell(ω

−1 ⊗ deg, ω).
Remark. For EllpC (elliptic curves over C and p-isogenies), have inclusion

MFweight=2(Γ0(p))W=−1 ↪→ Ext1
EllpC

(ω−1 ⊗ deg, ω).

W = Atkin-Lehner involution.
Hodge class corresponds to E2,p(q) = E2(q)− pE2(qp), where E2(q) = − 1

12
+
∑

n, d|n dq
n.

Hodge class is non-trivial essentially “because” E2(q) is not a modular form. (Katz.)
Hope. We will note below that QCoh(Def) has something to do with Morava E-theory

(as comm S-algebra).
Dream: QCoh(Ell) has similar relationship to elliptic cohomology, as a globally equivariant

ultracommutative ring/scheme.
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4. Def is representable; Morava E-theory

Fix G0/k as before.
Aut(G/A) acts freely on deformation structures D(G/A).
=⇒ at most one iso between any two objects of Def(A) (Def(A) is “0-truncated” in Cat).
Can form Def(A)/ ∼: identify isomorphic objects. “Gaunt”.
Let Defr(A)/ ∼:= set of morphisms of degree pr. (If r = 0, these are objects.)

Defr(A)/ ∼←→ { (G,K) | K ≤ G subgroup of deg pr }.

4.1. Theorem (Lubin-Tate, Strickland). There exist complete loc rings Ar, r ≥ 0, so

Hom(Ar, B) ≈ Defr(B)/ ∼ .

(Local homomorphisms.) Isomorphism A0 ≈Wpk[[u1, . . . , un−1]].

=⇒
∐

SpecAr is a “graded affine category scheme”.
M ∈ QCoh(Def) are same as A-comodules:

(ψr) : M →
∏

r≥0Ar ⊗A0 M such that . . . .

5. Morava E-theory

5.1. Theorem (Morava, Goerss-Hopkins-Miller, Strickland). There exists essentially unique
comm S-algebra E = EG0/k such that

Ar[u, u
−1] ≈ E∗(BΣpr)/I, |u| = 2

where I = sum of images of transfers along all Σi × Σpr−i ⊂ Σpr , 0 < i < pr.
In particular, π∗E = A0[u, u−1].

6. Power operations for K(n)-local commutative E-algebras

R = comm E-algebra: power operation

Pm : π0R→ π0R
BΣ+

m ≈ π0R⊗E0 E
0BΣm.

(Iso uses R is K(n)-local.)
Obtain ring homomorphims

ψr : π0R→ π0R⊗E0 E
0BΣpr → π0R⊗A0 Ar.

This makes π0R into A-comodule. Hence, we have

π0 : Alg(E)K(n) → QCoh(Def).

6.1. Proposition. Exists A = AG0, monadic over complete E∗-modules, and lift

A

��

// QCoh(Def,Ring∗)Frob

uu

Alg(E)K(n)

π∗

77

π∗
// Mod(E∗)

Forget factors through A → QCoh(Def,Ring∗)Frob (graded quasicoherent sheaves of (complete)
commutative rings on Def which satisfy a “Frobenius congruence”). Restricts to equivalence

Atf ∼−→ QCoh(Def,Ring∗)tf
Frob,

of full subcategories of p-torsion free objects.
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(Ando-Hopkins-Strickland, R., Barthel-Frankland.)
Frobenius congruence. Skip? R ∈ QCoh(Def,Ring) such that for A ⊇ Fp,

A
φ ⊗A RA(G, (i, α))

∼−→ RA(φ∗G, φ∗(i, α)) = RA(φ∗G,F∗(i, α))
F ∗−→ RA(G, (i, α))

coincides with relative Frobenius on ring RA(G, (i, α)).

Example. G0 = Ĝm/Fp, E = KUp. All Ar = Zp.
A ≈ category of p-complete Z/2-graded θp-ring (Bousfield).
A θp-ring (non-graded) is commutative ring A with function θ : A→ A such that

θ(0) = 0, θ(x+ y) = θ(x) + θ(y)− 1
p

p−1∑
k=1

(
p

k

)
xkyp−k,

θ(xy) = xpθ(y) + ypθ(x) + pθ(x)θ(y).

The map ψ(x) := xp + pθ(x) is ring homomorphism, giving “coaction” M → A1 ⊗A0 M = M .

7. Quadratic description of QCoh(Def)

Recall that QCoh(Def) are comodules for {Ar}.

7.1. Proposition. The structure of comodule on is completely determined by an A0-module
M , together with A0-module map

ψ : M → t
A1

s ⊗A0 M

such that there exists a dotted arrow A0-module map in

M
ψ

//

��

t
A1

s ⊗A0 M

id⊗ψ
��

t
A2

s ⊗A0 M ∇⊗id
//
t
A1

s ⊗A0

t
A1

s ⊗A0 M

(Note ∇⊗ id is always mono.)

Thus, a small amount of data (A1, s, t, A2 ⊂ A1 ⊗ A1) describes the category QCoh(Def).

7.2. Remark. Skip? At height 2, have w : A1 → A1 ring homomorphism classifying “dual
isogeny”. Whence isomorphism (A1 ⊗A0 A1)/∇(A2) ≈ A1/s(A0) of A0-bimodules, using
w × id : A1 ⊗A0 A1 → A1. Condition on ψ is (w × ψ)ψ ≡ 0 mod s(A0).

At height 2, small primes, this has been worked out explicitly (R., Zhu).

7.3. Remark. Skip? For a s.s. curve over F2, have:

A0 = Z2[[a]], A1 = A0[d]/(d3 − ad− 2),

s(a) = a, t(a) = w(a) = a2 + 3d− ad2, w(d) = a− d2.

At all primes at height 2, can describe everything mod p.
Example: ht 2, any p. Skip? G0/Fp = completion of particular s.s. curve. Then

A0/p ≈ Fp[[a]], A1/p ≈ Fp[[a0, a1]]/
(
(ap0 − a1)(a0 − ap1)

)
,

A2/p ≈ Fp[[a0, a1]]/
(
(ap

2

0 − a1)(ap0 − a
p
1)(a0 − ap

2

1 )
)
.

s : a 7→ a0, t : a 7→ a1, ∇ : a0, a2 7→ 1⊗ a0, a1 ⊗ 1.
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Koszul. QCoh(Def) has finite homological dimension 2n, and comes with “functorial
small resolutions”. Assuming we have data as above, we can compute Ext.

Skip? At height 2, ExtQCoh(Def)(M,N) for M projective A0-module is H∗ of

HomA0(M,N)→ HomA0(M,
t
A1

s ⊗A0 N)→ HomA0(M,
w2s

(A1/sA0)
s ⊗A0 N)

f 7→ ψNf − (id⊗f)ψM , g 7→ (w × ψN)g + (w × g)ψM .

8. Spectral sequence for maps in Alg(E)K(n)/E

Let R,F augmented K(n)-local E-algebras. =⇒ spectral sequence

Es,t
2 =⇒ πt−sAlg(E)/E(R,F ).

For π∗R smooth as a (complete) π∗E-algebra, and π∗R and π∗F concentrated in even degrees,

Es,t
2 =

{
A(π∗R, π∗F ) (s, t) = (0, 0),

ExtsQCoh(Def)(ω
−1 ⊗ Q̂(π∗R), ωt/2−1 ⊗ π∗F ) otherwise.

Q̂ is (completion of) indecomposables; π∗F ⊂ π∗F is augmentation ideal.
Example. (Special case of conjecture1 of Hopkins-Lurie.)
Fix G0/Fp over alg closed field, height 2. (E.g., completion of a supersingular elliptic

curve.)
Can show

Alg(S)(Σ∞+ Z, E) ≈ F×p ×K(Zp, 3).

(Same as Alg(E)/E
(
(E ∧ Σ∞+ Z)K(n), E × E

)
.)

This is less exciting than it looks: know π∗≥4 = 0 by Ravenel-Wilson, and π3 is known
(e.g., Sati-Westerland).

Proof. Have that Q̂(E∧∗ Z) ≈ deg. Calculate explicitly, using explicit height 2 formulas.

All Es,t
2 vanish except E0,0

2 ≈ F×p and

E1,4
2 = Ext1

QCoh(Def)(ω
−1 ⊗ deg, ω) ≈ Zp.

Remark. Assume G0 is from s.s. elliptic curve C0. E1,4
2 generated by Hodge class:

0→ ω → H1
dR(C/S)→ ω−1 ⊗ deg→ 0,

of universal deformation C/Spec(A0).
Remark.

π3Alg(S)(Σ∞+ Z,TMFp) = [Σ3HZ, gl1(TMFp)] ≈ Zcpp ,
(p-complete TMF.)
cp = dim MF2(Γ0(p))W=−1 = (s.s. j-invts in Fp) + 1

2
(s.s. j-invts in Fp2 r Fp). (Ogg.)

Department of Mathematics, University of Illinois, Urbana, IL
E-mail address: rezk@math.uiuc.edu

1Word on the street: theorem.


