Mike Mandell: E, genera

The idea of this project is to try to understand: which cobordism invariants are realized as maps of structured ring
spectra? This is based on arXiv:1310.3336, and is all joint with Greg Chadwick.

Recall that a genus is a cobordism invariant. Generally, we want this to come as a map MG — R for G some
structure group — hopefully a map of ring spectra; the manifold invariants come after applying 7.. We’ll be most
interestd in M SO and MU (orientable and stably almost-complex manifolds, resp.). Recall that e.g. MU, (X) is
the cobordism theory of stably almost-complex manifolds equipped with a map to some parametrizing space X.

Now, M SO and MU are commutative S-algebras, a/k/a “E-ring spectra”. So, a natural question is: Which
genera come from maps of commutative S-algebras? Or easier, how about just S-algebras, a/k/a “A,.-ring spectra”,
a/k/a Fj-ring spectra? Intermediately, we also can ask about E,, for all n. This will be our focus.

Here is the main result.

Theorem 6. Let R be an Es-ring spectrum with no odd homotopy (i.e., it’s “even”). Then any map of (homotopy)
ring spectra MU — R lifts to a map of Eo-ring spectra. If moreover 271 € myR, then any map of ring spectra
MSO — R lifts to a map of Es-ring spectra.

Corollary 2. The Quillen idempotent MU — MU is an E5 map, and taking telescopes yields that BP is also an
FEs-ring spectrum.

This is independent of Basterra—Mandell, who show that BP is E4 but didn’t answer the question of the Quillen
idempotent.

Corollary 3. Given source and target ring spectra where the target is Es, any map of ring spectra can be lifted to
an Ey map.

This all runs through the Pontryagin—Thom theorem, which says that cobordism theories are represented by
Thom spectra, and that in this framework genera are precisely multiplicative orientations.

Definition 10. An R-orientation for C"-vector bundles is an element of R**(EU(n), EU(n)) that restricts to
a generator of R?"(C",C™ — 0) on every fiber of BU(n). Here, EU(n) is the universal C"-vector bundle and
EU (n) is obtained by deleting the zero-section. An orientation is multiplicative if we actually get a unit element
of R?(C",C" — 0) = R%(x). By excision, an orientation is equivalently an element of R2"(TU(n)), for TU (n)
the Thom space of EU(n). We can actually define MU = colim 2%, , TU(n), from which we get that [MU, R] =
colim R?™(TU (n)).

Now, the Thom diagonal is a map MU — MU A BU,, coming from maps TU(n) — TU(n) A BU(n)4; this
gives an action R*MU ® R*BU — R*MU. For a fixed orientation (MU — R) € R*MU, this yields a map
R*BU — R*MU. This is precisely the Thom isomorphism.

Now, Mahowald proved that the Thom diagonal is actually a map of ring spectra, and Lewis proved that actually
this is even an F, map.

Hence, for 0 : MU — R a multiplicative orientation, a map BU — R - i.e., a map ¥ BU — R of spectra —
gives a ring map

MU - MUANBUL - RANR— R.

Now, maps of ring spectra 3 BU — R are the same as h-space maps BU — Q> R*, and these give ring maps
MU — R. We view this as ROBU — R°MU. We can state Quillen’s theorem in this light.

Theorem 7. Ring maps MU — R are exactly the elements of ROMU that correspond to elements of R*(TU(1))
that restrict to the unit element of R%(S?).

Now, assume that R is an E,-ring spectrum, and suppose that o : MU — R is E,. We can play the same game,
and we get the same comparison: an equivalence between E, maps X°BU — R and FE, maps BU — Q*°R*.
Moreover, Dunn proved that if R is E,, then RA R — R is E,,_;...but we’re interested in F,, maps, so we just
bump up n by 1. That is, if R is E, 1 then we have a natural action of mapg (BU,Q>*°R*) on mapg (MU, R).
Assuming the target is nonempty, choosing a basepoint yields a map mapg, (BU,Q*R*) — mapg (MU, R).

So, assume that R is F, 1 and that 0 : MU — R is E,.
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Theorem 8. The Thom map induces a map
mapy (BU, Q®R*) ~ mapp (X3°BU, R) = mapg (MU, R),
and this is a weak equivalence.

One might call this a multiplicative Thom isomorphism. Whereas one proves the usual Thom isomorphism cell
by cell, here it works slightly better to assume R is connective (which is fine since MU is too) and look at its
multiplicative Postnikov tower.

To describe these sorts of Postnikov towers, suppose R is a connective E,,-ring spectrum and let Z = moR. Then
we get a Postnikov tower
R—---R(2) - R(1) > R(0O)=HZ

in the category of E,-ring spectra. The key — due to Kriz — is that this is actually a tower of principal fibrations
of E,-ring spectra, given by pullbacks

R(j+1) HZ

R(j) HZV Y72 H(mj41R)

ki

in E,-ring spectra (where the bottom-right is the square-zero ring spectrum, and is in fact E,). This is basically
just a freed-up version of the spectrum version where we remove both instances of HZ.

Now, we define topological Quillen cohomology (relative to Z) by Hy, (A; M) = momapg, gz (A, HZ VX *HM).

This gives rise to an obstruction theory: there’s an obstruction in H};ZQ(A;WJ—HR) to lifting an F,-ring map
A — R(j) to an E,-ring map A — R(j + 1). (This comes from mapping A into the pullback square above.) The
space of lifts is either empty or is a “free orbit” on the topological monoid

mapy gz (A HZV ST HM) ~ Qmapy, |/ 5,(A,HZV S HM) ~ QPmapg, 5,(A, HZV S TP HM) ~ - - .

This gives a sort of Atiyah—Hirzebruch spectral sequence: For E,-ring spectra A and R (with A satisfying mild
hypotheses: maybe connective and also with a chosen map mgA — Z), there is an “obstructed” spectral sequence

Ezg,q = Hg’n (A;mgR) = m4—pmapp, (A, R).

(This is “obstructed” in the sense that you can only pass to the next page when the obstructions vanish.)

Now, let’s say some stuff! Chadwick’s thesis handles the multiplicative Thom isomorphism in the case where
the target is Fo. This follows from what we’ve said, since the Thom map induces isomorphisms on E2-terms of
the obstructed spectral sequence, and hence an isomorphism of abutments.

Finally, we have the main result.

Theorem 9. If R is an even E3-ring spectrum, then mapg, (MU, R) ~ mapg, (BU,Q*°R*), and 7_,mapg, (BU, Q*R*) —
R*(BU(1)) is surjective. Thus, every map of ring spectra MU — R lifts to a map of Es-ring spectra.

For R only Es-we have to be more careful, but in fact the theorem still holds.
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Overview

Which cobordism invariants are realized as maps of highly structured
ring spectra?

@ Joint work with Greg Chadwick (UC Riverside)

@ Preprint arXiv:1310.3336

@ Builds on Greg’s thesis: Structured orientations of Thom spectra
(Thesis, Indiana University, 2012)
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Review of Genera

Definition

A genus is a cobordism invariant for manifolds with extra structure:

It assigns to every manifold (with extra structure) an element of an
abelian group A

M™ — ~(M) € A
such that when M is a boundary (with extra structure) v(M) = 0.
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If there exits an E,, ring map MU — R

Then any map of ring spectra MU — R lifts to a map of E, ring spectra.

Consequence: Taking R = MU, the Quillen idempotent is an E, map,
and BP is an E, ring spectrum (Chadwick’s IU PhD Thesis)

Independent of [Basterra-Mandell] which showed that BP is E4
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Genera and Orientations

Pontryagin-Thom theorem
@ Cobordism theories are represented by Thom spectra
@ Genera are multiplicative orientations

— BU(n) classifying space for C"-vector bundles

= PU(n) total space of universal principal bundle
(free contractible CW U(n)-space)

2 EU(n) = PU(n) x y(ny C" total space of universal vector bundle
= EU(n) = PU(n) x y(s (C" - {0})
TU(n) = PU(n)4+ Ay(ny S?" Thom space

{
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Genera and Orientations

Pontryagin-Thom theorem
@ Cobordism theories are represented by

@ Genera are multiplicative orientations

An R-orientation for C"-vector bundles is an element of R2"(EU(n), EU(
that restricts to a generator of R2"(C",C" — {0}) on each fiber (of BU(n)

=)

)

~

Multiplicative:
@ Restricts to ynit element of RZ"(C", C" — {0}) o A U"\
o REM(EU(m).EU(m)) © RE(EU(n).EU(n)) w\*\?’\)
— R2™T20((EU(m), EU(m)) x (EU(n), EU(n))) @U v W‘\
B R2m+2”(EU_\(m_+_f_1£U(_mi-_f)) " %\L&\N‘
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Genera and Orientations

Pontryagin-Thom theorem
@ Cobordism theories are represented by
@ Genera are multiplicative orientations

An R-orientation for C"-vector bundles is an element of R2"(EU(n), EU(n))
that restricts to a generator of R2"(C",C" — {0}) on each fiber (of BU(n)).

Multiplicative:
@ Restricts to unit element of R2"(C",C" — {0})
@ R?M(EU(m),EU(m)) © RE"(EU(n), EU(n))

— RE™20((EU(m), EU(m)) x (EU(n), EU(n)))
— R2M20(EU(m + n), EU(m + n))

Excision: R2"(EU(n), EU(n)) = R2"(TU(n)).
\_/ ————y llJ
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Genera and Orientations

Pontryagin-Thom theorem
@ Cobordism theories are represented by
@ Genera are multiplicative orientations

An R-orientation for C"-vector bundles is an element of R2"(EU(n), EU(n))
that restricts to a generator of R2"(C",C" — {0}) on each fiber (of BU(n)).
Multiplicative:
@ Restricts to unit element of R2"(C",C" — {0})
@ R?M(EU(m),EU(m)) © RE"(EU(n), EU(n))
— REMHEN((EU(m), EU(m)) x (EU(n), EU(n)))

— RPM20(EU(m + n), EU(m + n))
Excision: R?"(EU(n), EU(n)) ~

MU = colim ==, TU(n) (MU, R = RO (MU) 2 lim R27(TU(n)) ']

U(n
‘
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Thom diagonal
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Gives an action
R*(MU) ® R*(BU) — R*(MU)
—
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The Thom Isomorphism

Thom diagonal

MU — MU N BU,
Gives an action

R*(MU) ® R*(BU) — R*(MU)
f: MU

— . MU MUABU, "% RAR-R
9. TTBUS R

Taking f to be a fixed orientation, get a map

R*BU — R*MU
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The Thom Isomorphism

Thom diagonal
MU — MU N BU4

Gives an action
R*(MU) ® R*(BU) — R*(MU)

f: MU — R fAg
— MU—-MUNBU, — RANR—R
9:X¥YBU—~ R

Taking f to be a fixed orientation, get a map
R*BU — R*MU

Thom Isomorphism: This map is an isomorphism

w
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Multiplicative Structure

Thom diagonal
MU — MU N BU4

w
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Multiplicative Structure

is a map of ring spectra [Mahowatd

|

MU

Thom diagonal

(MU A BU,) A (MU A BU\—— MU A MU A (BU x BU).,
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Multiplicative Structure

Thom diagonal
MU — MU N BU4

is a map of ring spectra [Mahowald] in fact E., ring spectra [Lewis]

MU A MU — (MU A BUL) A (MU A BUL) =— MU A MU A (BU x BU),

| |

MU MU A BUL

w
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Multiplicative Orientations

For a multiplicative orientation@

Thom map

g:IBU—SR ) = [ MU->MUABU, 2% RAR— R

w

M.A.Mandell (IU) Ep Genera Apr 2014 10/18



Multiplicative Orientations

For a multiplicative orientation o

Thom map

o/Ag

g:x*BU—R = MU —- MUNBU: — RAR— R

@ Ring spectra maps, 2°BU — R
———

in R%(BU
= H-space maps BU — QR } I (BU)
% e

—

w
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Multiplicative Orientations

For a multiplicative orientation o

D &
Thom map (A0 .LX\:) ‘/{m‘“p
Y

g:IBU—-R =  MUSMUABU, 2% RAR—R

takes

@ Ring spectra maps ¥°°BU — R

in R%(BU
= H-space maps BU — Q> R* } in AA(BU)

to
@ Ring spectra maps MU — R in R°(MU)

w
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“Quillen’s Theorem”

For a multiplicative orientation, the Thom map takes
maps of H-spaces in [BU, Q°R*] = R%(BU)
to maps of ring spectra in [MU, R] = R°(MU)

w
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“Quillen’s Theorem”

For a multiplicative orientation, the Thom map takes

maps of H-spaces in [BU, Q°R*] = R%(BU)

to maps of ring spectra in [MU, R] = R°(MU)

Theorem (Hirzebruch, Dold, Quillen)

Maps of ring spectra in R°(MU) are in one-to-one correspondence

with elements of R?(TU(1)) that restrict to the unit element of R?(S?)
& g;g?
o

w
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“Quillen’s Theorem”

For a multiplicative orientation, the Thom map takes
maps of H-spaces in [BU, Q°R*] = R%(BU)
to maps of ring spectra in [MU, R] = R°(MU)

Theorem (Hirzebruch, Dold, Quillen)

Maps of ring spectra in RO(MU) are in one-to-one correspondence
with elements of R?(TU(1)) that restrict to the unit element of R?(S?)

When a map of ring spectra MU — R exists, then:

@ The maps of ring spectra in R°(MU) are exactly the maps that
correspond to maps of H-spaces in R°(BU) and

w
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“Quillen’s Theorem”

For a multiplicative orientation, the Thom map takes
maps of H-spaces in [BU, Q°R*] = R%(BU)
to maps of ring spectra in [MU, R] = R°(MU)

Theorem (Hirzebruch, Dold, Quillen)

Maps of ring spectra in RO(MU) are in one-to-one correspondence
with elements of R?( TU(1)) that restrict to the unit element of R?(S?)

When a map of ring spectra MU — R exists, then:

@ The maps of ring spectra in R°(MU) are exactly the maps that

correspond to maps of H-spaces in R°(BU) and
@ Are in one-to-one correspondence with elements off R°(BU(1)) via
the map on R® induced by BU(1) — BU. ~——
\

- P
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“Quillen’s Theorem”

For a multiplicative orientation, the Thom map takes
maps of H-spaces in [BU, Q°R*] = R%(BU)
to maps of ring spectra in [MU, R] = R°(MU)

Theorem (Hirzebruch, Dold, Quillen)

RO(MU) are in one-to-one correspondg
that restrict to the unit element o
0

Maps of ring spegtra in B
Always hol

with elements of
When a map of ring-spe€tra MU — R exists, [ when R is even
@ The maps of ring spectra in R°(MU) are exactly the maps that
correspond to maps of H-spaces in R°(BU) and

@ Are in one-to-one correspondence with elements of R°(BU(1))|via
the map on R induced by BU(1) — BU. N

Ksﬁj (V4 [\
ey W
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E, genera

Assume that Ris E, ando: MU — Ris E,

?—eL_/\J

Thom map

M:% — MU MUABU, % RAR—R

w
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E, genera

Assume that Ris E, ando: MU — Ris E,

Thom map

%‘E_’i— — MU MUABU, 2% RAR-R

Fact:
@ Space of E, ring maps ~5°BU — R isomorphic to space of Ep,

maps BU—>§§°°F{X [Eﬁuinn—Ra -Tornehave]

w
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E, genera

Assume that Ris E, ando: MU — Ris E,

Thom map /
g:Xx¥BU—R = MU—>MU/\BU+ﬂ>R/\F.’—>R

Fact:
@ Space of E, ring maps ~5°BU — R isomorphic to space of Ep,
maps BU — Q>*°R* [May-Quinn-Ray-Tornehave]

@ IfRis E,then RAR — Ris E,_1 [Dunn]
—_— VeV

w
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E, genera

Assume that Ris E,.{ and o: MU & R is E,

4

MU — MU ABU, 2% RARS R

Tho

Fact:
@ Space of E, ring maps ~5°BU — R isomorphic to space of Ep,

maps BU — Q>*°R* [May-Quinn-Ray-Tornehave]

@ IfRis E,.1then RAR — Ris E, [Dunn]
—~—— —

w
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E, genera

Assume that R is E, 1 andé: I\(/IU\—>/I_?_|S/EU
Thom map

g:IBU—-R =  MU—->MUABU, 2% RAR—R

o—

Fact:

@ Space of E, ring maps ~5°BU — R isomorphic to space of Ep,
maps BU — Q>*°R* [May-Quinn-Ray-Tornehave]

@ IfRis E,.1then RAR — Ris E, [Dunn]

Observation

If Ris E,,1 and then we have a natural actio ce of E, maps
En(BU, Q> R*) on the space of E, ring maps\E,(MU, R).
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E, genera

Assume that Ris E,,1ando: MU — Ris E,
I\_

Thom map
g:Xx¥BU—R = MU—>MU/\BU+ﬂ>R/\F.’—>R

Fact:

@ Space of E, ring maps ~5°BU — R isomorphic to space of Ep,
maps BU — Q>*°R* [May-Quinn-Ray-Tornehave]

@ IfRis E,.1then RAR — Ris E, [Dunn]

Observation

If Ris E,,1 and then we have a natural action of the space of E, maps
En(BU, Q>*R*) on the space of E, ring maps £,(MU, R).

If non empty, we get a mapi&,(BU, Q> R*)\— E,(MU, R). IIJ
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Multiplicative Thom Isomorphism

Assume that Ris E,,1ando: MU — Ris E,
_

Thom map
g:Xx¥BU—R = MU—>MU/\BU+ﬂ>R/\F.’—>R

induces a map £x(BU,Q*R*) ~ E4(X°BU, R) — Ex(MU, R

——

w
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Multiplicative Thom Isomorphism

Assume that Ris E,,1ando: MU — Ris E,
(VAN
Thom map
g:Xx¥BU—R — MU—>MU/\BU+m>R/\F|’—>R

induces a map £x(BU,Q*°R*) ~ Ex(X°BU, R) — Ex(MU, R)
Theorem
This map is a weak equivalence.

|

w
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Multiplicative Thom Isomorphism

Assume that Ris E,,1ando: MU — Ris E,

Thom map

g:IBU—>R = MU—>MU/\BU+UAQRAF1’—>F1’

induces a map &£p(BU,Q*°R*) ~ E,(XBU, R) ’
A

Theorem

This map is a weak equivalence.

@ Suffices to consider the case when R is connective

w
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Multiplicative Thom Isomorphism

Assume that Ris E,,1ando: MU — Ris E,
Thom map

9:X¥YBU—~R = MU—>MU/\BU+m>R/\F1’—>F1’
induces a map £x(BU,Q*°R*) ~ Ex(X°BU, R) — Ex(MU, R)

Theorem
This map is a weak equivalence.

@ Suffices to consider the case when R is connective
@ Look at Postnikov tower of R

w
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Postnikov Towers of E, ring spectra

Let R be a connective E, ring spectrum and let Z = ngR.

—

w
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Postnikov Towers of E, ring spectra

Let R be a connective E, ring spectrum and let Z = ngR.

Form Postnikov tower by killing higher homotopy groups

R

w
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Postnikov Towers of E, ring spectra

Let R be a connective E, ring spectrum and let Z = moR.

—_——

Form Postnikov tower by killing higher homotopy groups

R— R(0) = HZ

w
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Postnikov Towers of E, ring spectra

Let R be a connective E, ring spectrum and let Z = ngR.

Form Postnikov tower by killing higher homotopy groups

R— R(1) — R(0) = HZ

w
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Postnikov Towers of E, ring spectra

Let R be a connective E, ring spectrum and let Z = ngR.

Form Postnikov tower by killing higher homotopy groups

R— R(2) — R(1) — R(0) = HZ

w
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Postnikov Towers of E, ring spectra

Let R be a connective E, ring spectrum and let Z = ngR.

Form Postnikov tower by killing higher homotopy groups

R— ---— R({2) - R(1) - R(0) = HZ

w
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Postnikov Towers of E, ring spectra

Let R be a connective E, ring spectrum and let Z = ngR.

Form Postnikov tower by killing higher homotopy groups
R— ---— R(2)— R(1) — R(0) = HZ

in the category of E, ring spectra.

w
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Postnikov Towers of E, ring spectra

Let R be a connective E, ring spectrum and let Z = ngR.
Form Postnikov tower by killing higher homotopy groups

R— ---— R(2)— R(1) — R(0) = HZ
in the category of E, ring spectra.

Magic Fact (Kriz)
This is a tower of principal fibrations of E, ring spectra

Rj+1)— s HZ
R<j> —— HZV Z/+2H7rj+1R

Kj1 ]'IJ
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Postnikov Towers of E, ring spectra

Let R be a connective E, ring spectrum and let Z = ngR.
Form Postnikov tower by killing higher homotopy groups

R— ---— R(2)— R(1) — R(0) = HZ
in the category of E, ring spectra.

Magic Fact (Kriz)
This is a tower of principal fibrations of E, ring spectra
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Topological Quillen Cohomology
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Topological Quillen Cohomology

¢
Hz (A M) := mo&n fHZSA’ HZ v £*HM)
O~ ‘

J
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Topological Quillen Cohomology

HEH(A; M) = ngn/Hz(A, HZ v ¥*HM)

Obstruction theory

J
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Topological Quillen Cohomology

HEH(A; M) = ngn/Hz(A, HZ v ¥*HM)

e

Obstruction theory N
@ Obstruction in H-'2(A; ;11 R) to
lifting an E, ring map A — R{j) toan E,ringmap A — R+ 1)

J

M.A.Mandell (IU) Ep Genera Apr 2014 15/18



Topological Quillen Cohomology

HEH(A; M) = ngn/Hz(A, HZ v ¥*HM)

Obstruction theory
@ Obstruction in H+2(A; 7,1 R) to
lifting an E, ring map A — R{j) toan E,ringmap A — R+ 1)
@ The space of lifts is either empty or is a “free orbit” on the
grouplike topological monoid

Enymz(A HZ vV X Hrj 4 R)

J
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Topological Quillen Cohomology

Hg (A; M) ngn/HZg/ﬁ HZ v * fzn
Obstruction theory
@ Obstruction in H*+2(A; 7,1 R) to

lifting an E, ring map A — R{j) toan E,ringmap A — R+ 1)
@ The space of lifts is either empty or is a “free orbit” on the

grouplike topological monoid v
Enyrz(A, HZ v £ Hmp Q& /pz(A HZ v T2 Hrj 4 R)

J
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Topological Quillen Cohomology

Hz (A M) = mo&nyuz(A, HZ v £* HM) RUl—F H——— 112
Obstruction theory R{j) —— HZ v Zj+2H7r,-+1 R
@ Obstruction in H+2(A; 7,1 R) to i
lifting an E, ring map A — R{j) toan E,ringmap A — R+ 1)
@ The space of lifts is either empty or is a “free orbit” on the

gl’ EtOpRSIOLHEAT TITOROIQ
‘ ! ~ Q€ nz(A HZ v T2 Hrj1 R)

Atiyah-Hirzebruch Spectral Sequence

For E, ring spectra A, R (with mil hese A), there is a natural

“obstructed” spectral sequence

Efq=HE (A fGR) = Wq—pgg(A, R). J

Apr 2014 15/18
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Multiplicative Thom Isomorphism

Thom isomorphism: HZ A MU =» HZ A BU, as E, HZ-algebras.

HZANMU — HZ NMUANBUy - HZNHZANBU, — HZ N BUL

— (M (zrBU D 1>

v
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Multiplicative Thom Isomorphism

Thom isomorphism: HZ A MU =» HZ A BU, as E, HZ-algebras.
HZANMU — HZ ANMUANBUy - HZNHZANBU, — HZ N BU,
— Hz (£ BU; —) = HE (MU; -)

Consequence

For R an E, . ring spectrum and o: MU — R an E, ring map, the
Thom map induces an isomorphism on E2-terms

HE (E°BU; mqR) = HE (MU; 7gR)

v
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Multiplicative Thom Isomorphism

Thom isomorphism: HZ A MU =» HZ A BU, as E, HZ-algebras.

HZANMU — HZ NMUANBUy - HZNHZANBU, — HZ N BUL

— Hz (£ BU; —) = HE (MU; -)

Consequence

For R an E, . ring spectrum and o: MU — R an E, ring map, the
Thom mafyduces an isomorphism on E2-terms

HE (E°BU; mqR) = HE (MU; 7qR) s_

and an isomorphism
m.En(E°BU, R) = m.En(MU, R)

v
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Multiplicative Thom Isomorphism

Thom isomorphism: HZ A MU =» HZ A BU, as E, HZ-algebras.

HZANMU — HZ NMUANBUy - HZNHZANBU, — HZ N BUL

— Hz (£ BU; —) = HE (MU; -)

Consequence

For R an E, . ring spectrum and o: MU — R an E, ring map, the
Thom map induces an isomorphism on E2-terms

HE (E°BU; mqR) = HE (MU; 7gR)

and an isomorphism
m.En(E°BU, R) = m.En(MU, R)

Nothing special about BU/MU here; works for any E, Thom spectrum."lJ
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Computation

En(X°BU, R)

w
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Computation

En(EFBU, R) ~ £n(BU, 0°R*)

w
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Computation

En(EFBU, R) ~ E4(BU, °R¥)
= £,(BU, (2°R¥);)

w
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Computation

En(Z°BU, R) ~ £,(BU, Q*°R*)
= £,(BU, (Q°R*)1)
~ U(B"BU, B"(Q°R)1)

w
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Computation

En(Z°BU, R) ~ £,(BU, Q*°R*)
= £,(BU, (Q°R*)1)
~ U(B"BU, B"(Q°R)1)

Compute using “Atiyah-Hirzebruch spectral sequence”

HP(B"BU; Ry) = HP(B"BU: mq4n(B"(Q°R)1))
—  mgin_pl(B"BU, B"(Q°R);)

w
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Computation

En(Z°BU, R) ~ £,(BU, Q*°R*)
= £,(BU, (Q°R*)1)
~ U(B"BU, B"(Q°R)1)

Compute using “Atiyah-Hirzebruch spectral sequence”

HP(B"BU; Ry) = HP(B"BU: mq4n(B"(Q°R)1))
—  mgin_pl(B"BU, B"(Q°R);)

For n=2,
H*(B?BU) = H*(BSU) = Z[cy, c3, . . ]

w
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Computation
S@H) ~ £,(BU, Q*°R¥)
=&En(BU, (2*°R*)1)
CEn FeeR)
W
Compute using “Atiyah-Hirzebruch spectral sequence”

HP(B"BU; Ry) = HP(B"BU: mq4n(B"(Q°R)1))
—  mgin_pl(B"BU, B"(Q°R);)

For n=2,
H*(B?BU) = H*(BSU) = Z[cy, c3, . . ]
and W on AV
H*(BSU) — H*(£2BU(1))
is surjective. W= i 1]
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Main Result

Theorem

If R is an even Ej3 ring spectrum, then E;(MU, R) ~ &(BU, Q> R*)

and r_,E(BU, Q> R*) — R*(BU(1)) is surjective. Thus, every map of
ring spectra MU — R lifts to a map of E; ring spectra.

J
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Main Result

Theorem

If R is an even Ej ring spectrum, then Eo(MU, R) ~ & (BU, Q*R*)
and r_,E(BU, Q> R*) — R*(BU(1)) is surjective. Thus, every map of
ring spectra MU — R lifts to a map of E; ring spectra.

What about for R just E?

J
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Main Result

Theorem

If R is an even Ej ring spectrum, then Eo(MU, R) ~ & (BU, Q*R*)
and r_,E(BU, Q> R*) — R*(BU(1)) is surjective. Thus, every map of
ring spectra MU — R lifts to a map of E; ring spectra.

What about for R just E?

Hz, (MU; ) = Hg, (Z°BU; )

J
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Main Result

Theorem

If R is an even Ej ring spectrum, then Eo(MU, R) ~ & (BU, Q*R*)
and r_,E(BU, Q> R*) — R*(BU(1)) is surjective. Thus, every map of
ring spectra MU — R lifts to a map of E; ring spectra.

What about for R just E?

Hz,(MU; ) = H, (£ BU; ) = H*"2(B"BU; )

J
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Main Result

Theorem

If R is an even Ej ring spectrum, then Eo(MU, R) ~ & (BU, Q*R*)
and r_,E(BU, Q> R*) — R*(BU(1)) is surjective. Thus, every map of
ring spectra MU — R lifts to a map of E; ring spectra.

What about for R just E?
Hz,(MU; ) = H, (£ BU; ) = H*"2(B"BU; )
= H**2(BSU; ) - H*(BU(1); )

J
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Main Result

If R is an even Ej ring spectrum, then Eo(MU, R) ~ & (BU, Q*R*)
and r_,E(BU, Q> R*) — R*(BU(1)) is surjective. Thus, every map of
ring spectra MU — R lifts to a map of E; ring spectra.

What about for R just E?
Hz,(MU; ) = H, (£ BU; ) = H*"2(B"BU; )
= H**2(BSU; ) - H*(BU(1); )

Careful argument with “Atiyah-Hirzebruch spectral sequence”

If R is an even E, ring spectrum then every map of ring spectra |
MU — R lifts to a map of E, ring spectra. J
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