Mike Mandell: E_n genera

The idea of this project is to try to understand: which cobordism invariants are realized as maps of structured ring spectra? This is based on arXiv:1310.3336, and is all joint with Greg Chadwick.

Recall that a genus is a cobordism invariant. Generally, we want this to come as a map $MG \to R$ for G some structure group – hopefully a map of ring spectra; the manifold invariants come after applying π_* . We'll be most interestd in MSO and MU (orientable and stably almost-complex manifolds, resp.). Recall that e.g. $MU_*(X)$ is the cobordism theory of stably almost-complex manifolds equipped with a map to some parametrizing space X.

Now, MSO and MU are commutative S-algebras, a/k/a " E_{∞} -ring spectra". So, a natural question is: Which genera come from maps of commutative S-algebras? Or easier, how about just S-algebras, a/k/a " A_{∞} -ring spectra", a/k/a E_1 -ring spectra? Intermediately, we also can ask about E_n for all n. This will be our focus.

Here is the main result.

Theorem 6. Let R be an E_2 -ring spectrum with no odd homotopy (i.e., it's "even"). Then any map of (homotopy) ring spectra $MU \rightarrow R$ lifts to a map of E_2 -ring spectra. If moreover $2^{-1} \in \pi_0 R$, then any map of ring spectra $MSO \rightarrow R$ lifts to a map of E_2 -ring spectra.

Corollary 2. The Quillen idempotent $MU \rightarrow MU$ is an E_2 map, and taking telescopes yields that BP is also an E_2 -ring spectrum.

This is independent of Basterra–Mandell, who show that BP is E_4 but didn't answer the question of the Quillen idempotent.

Corollary 3. Given source and target ring spectra where the target is E_2 , any map of ring spectra can be lifted to an E_2 map.

This all runs through the Pontryagin–Thom theorem, which says that cobordism theories are represented by Thom spectra, and that in this framework genera are precisely multiplicative orientations.

Definition 10. An *R*-orientation for \mathbb{C}^n -vector bundles is an element of $R^{2n}(EU(n), \tilde{E}U(n))$ that restricts to a generator of $R^{2n}(\mathbb{C}^n, \mathbb{C}^n - 0)$ on every fiber of BU(n). Here, EU(n) is the universal \mathbb{C}^n -vector bundle and $\tilde{E}U(n)$ is obtained by deleting the zero-section. An orientation is multiplicative if we actually get a unit element of $R^{2n}(\mathbb{C}^n, \mathbb{C}^n - 0) \cong R^0(*)$. By excision, an orientation is equivalently an element of $\tilde{R}^{2n}(TU(n))$, for TU(n)the Thom space of EU(n). We can actually define $MU = \operatorname{colim} \Sigma^{\infty}_{-2n}TU(n)$, from which we get that $[MU, R] \cong$ $\operatorname{colim} \tilde{R}^{2n}(TU(n))$.

Now, the Thom diagonal is a map $MU \to MU \land BU_+$, coming from maps $TU(n) \to TU(n) \land BU(n)_+$; this gives an action $R^*MU \otimes R^*BU \to R^*MU$. For a fixed orientation $(MU \to R) \in R^*MU$, this yields a map $R^*BU \to R^*MU$. This is precisely the Thom isomorphism.

Now, Mahowald proved that the Thom diagonal is actually a map of ring spectra, and Lewis proved that actually this is even an E_{∞} map.

Hence, for $\sigma: MU \to R$ a multiplicative orientation, a map $BU \to R$ – i.e., a map $\Sigma^{\infty}_{+}BU \to R$ of spectra – gives a ring map

$$MU \to MU \land BU_+ \to R \land R \to R.$$

Now, maps of ring spectra $\Sigma^{\infty}_{+}BU \to R$ are the same as h-space maps $BU \to \Omega^{\infty}R^{\times}$, and these give ring maps $MU \to R$. We view this as $R^{0}BU \to R^{0}MU$. We can state Quillen's theorem in this light.

Theorem 7. Ring maps $MU \to R$ are exactly the elements of R^0MU that correspond to elements of $\tilde{R}^2(TU(1))$ that restrict to the unit element of $\tilde{R}^2(S^2)$.

Now, assume that R is an E_n -ring spectrum, and suppose that $\sigma: MU \to R$ is E_n . We can play the same game, and we get the same comparison: an equivalence between E_n maps $\Sigma^{\infty}_{+}BU \to R$ and E_n maps $BU \to \Omega^{\infty}R^{\times}$. Moreover, Dunn proved that if R is E_n then $R \wedge R \to R$ is E_{n-1} ...but we're interested in E_n maps, so we just bump up n by 1. That is, if R is E_{n+1} then we have a natural action of $\operatorname{map}_{E_n}(BU, \Omega^{\infty}R^{\times})$ on $\operatorname{map}_{E_n}(MU, R)$. Assuming the target is nonempty, choosing a basepoint yields a map $\operatorname{map}_{E_n}(BU, \Omega^{\infty}R^{\times}) \to \operatorname{map}_{E_n}(MU, R)$.

So, assume that R is E_{n+1} and that $\sigma: MU \to R$ is E_n .

Theorem 8. The Thom map induces a map

$$\operatorname{map}_{E_n}(BU, \Omega^{\infty} R^{\times}) \simeq \operatorname{map}_{E_n}(\Sigma^{\infty}_+ BU, R) \to \operatorname{map}_{E_n}(MU, R),$$

and this is a weak equivalence.

One might call this a *multiplicative Thom isomorphism*. Whereas one proves the usual Thom isomorphism cell by cell, here it works slightly better to assume R is connective (which is fine since MU is too) and look at its *multiplicative* Postnikov tower.

To describe these sorts of Postnikov towers, suppose R is a connective E_n -ring spectrum and let $Z = \pi_0 R$. Then we get a Postnikov tower

$$R \to \cdots R\langle 2 \rangle \to R\langle 1 \rangle \to R\langle 0 \rangle = HZ$$

in the category of E_n -ring spectra. The key – due to Kriz – is that this is actually a tower of *principal* fibrations of E_n -ring spectra, given by pullbacks

in E_n -ring spectra (where the bottom-right is the square-zero ring spectrum, and is in fact E_{∞}). This is basically just a freed-up version of the spectrum version where we remove both instances of HZ.

Now, we define topological Quillen cohomology (relative to Z) by $H^*_{E_n}(A; M) = \pi_0 \operatorname{map}_{E_n/HZ}(A, HZ \vee \Sigma^* HM)$. This gives rise to an obstruction theory: there's an obstruction in $H^{j+2}_{E_n}(A; \pi_{j+1}R)$ to lifting an E_n -ring map $A \to R\langle j + 1 \rangle$. (This comes from mapping A into the pullback square above.) The space of lifts is either empty or is a "free orbit" on the topological monoid

$$\operatorname{map}_{E_n/HZ}(A, HZ \vee \Sigma^{j+1}HM) \simeq \Omega \operatorname{map}_{E_n/HZ}(A, HZ \vee \Sigma^{j+2}HM) \simeq \Omega^2 \operatorname{map}_{E_n/HZ}(A, HZ \vee \Sigma^{j+3}HM) \simeq \cdots$$

This gives a sort of Atiyah–Hirzebruch spectral sequence: For E_n -ring spectra A and R (with A satisfying mild hypotheses: maybe connective and also with a chosen map $\pi_0 A \to Z$), there is an "obstructed" spectral sequence

$$E_{p,q}^2 = H_{E_n}^p(A; \pi_q R) \Rightarrow \pi_{q-p} \operatorname{map}_{E_n}(A, R).$$

(This is "obstructed" in the sense that you can only pass to the next page when the obstructions vanish.)

Now, let's say some stuff! Chadwick's thesis handles the multiplicative Thom isomorphism in the case where the target is E_{∞} . This follows from what we've said, since the Thom map induces isomorphisms on E^2 -terms of the obstructed spectral sequence, and hence an isomorphism of abutments.

Finally, we have the main result.

Theorem 9. If R is an even E_3 -ring spectrum, then $\operatorname{map}_{E_2}(MU, R) \simeq \operatorname{map}_{E_2}(BU, \Omega^{\infty} R^{\times})$, and $\pi_{-*}\operatorname{map}_{E_2}(BU, \Omega^{\infty} R^{\times}) \to R^*(BU(1))$ is surjective. Thus, every map of ring spectra $MU \to R$ lifts to a map of E_2 -ring spectra.

For R only E_2 -we have to be more careful, but in fact the theorem still holds.

Michael A. Mandell

Indiana University

MSRI Workshop on Reimagining the Foundations of Algebraic Topology

April 11, 2014

Ш

Which cobordism invariants are realized as maps of highly structured ring spectra?

- Joint work with Greg Chadwick (UC Riverside)
- Preprint arXiv:1310.3336
- Builds on Greg's thesis: Structured orientations of Thom spectra (Thesis, Indiana University, 2012)

Which cobordism invariants are realized as maps of highly structured ring spectra?

- Joint work with Greg Chadwick (UC Riverside)
- Preprint arXiv:1310.3336
- Builds on Greg's thesis: *Structured orientations of Thom spectra* (Thesis, Indiana University, 2012)

Which cobordism invariants are realized as maps of highly structured ring spectra?

- Joint work with Greg Chadwick (UC Riverside)
- Preprint arXiv:1310.3336
- Builds on Greg's thesis: Structured orientations of Thom spectra (Thesis, Indiana University, 2012)

Which cobordism invariants are realized as maps of highly structured ring spectra?

- Joint work with Greg Chadwick (UC Riverside)
- Preprint arXiv:1310.3336
- Builds on Greg's thesis: Structured orientations of Thom spectra (Thesis, Indiana University, 2012)

- Introduction and main result
- Genera and orientations

Which cobordism invariants are realized as maps of highly structured ring spectra?

- Joint work with Greg Chadwick (UC Riverside)
- Preprint arXiv:1310.3336
- Builds on Greg's thesis: Structured orientations of Thom spectra (Thesis, Indiana University, 2012)

- Introduction and main result
- ② Genera and orientations
- Multiplicative Thom isomorphism

Which cobordism invariants are realized as maps of highly structured ring spectra?

- Joint work with Greg Chadwick (UC Riverside)
- Preprint arXiv:1310.3336
- Builds on Greg's thesis: Structured orientations of Thom spectra (Thesis, Indiana University, 2012)

- Introduction and main result
- ② Genera and orientations
- Multiplicative Thom isomorphism
- Topological Quillen cohomology

Which cobordism invariants are realized as maps of highly structured ring spectra?

- Joint work with Greg Chadwick (UC Riverside)
- Preprint arXiv:1310.3336
- Builds on Greg's thesis: Structured orientations of Thom spectra (Thesis, Indiana University, 2012)

Outline

- Introduction and main result
- e Genera and orientations
- Multiplicative Thom isomorphism
- Topological Quillen cohomology and unstable obstructed Atiyah-Hirzebruch spectral sequences

ШT

Definition

A genus is a cobordism invariant for manifolds with extra structure:

It assigns to every manifold (with extra structure) an element of an abelian group A

$$M^m \mapsto \gamma(M) \in A$$

such that when *M* is a boundary (with extra structure) $\gamma(M) = 0$.

Definition

A genus is a cobordism invariant for manifolds with extra structure:

It assigns to every manifold (with extra structure) an element of an abelian group A

$$M^m \mapsto \gamma(M) \in A$$

such that when *M* is a boundary (with extra structure) $\gamma(M) = 0$.

Definition

A genus is a cobordism invariant for manifolds with extra structure:

It assigns to every manifold (with extra structure) an element of an abelian group A

$$M^m \mapsto \gamma(M) \in A$$

such that when *M* is a boundary (with extra structure) $\gamma(M) = 0$.

Extra structure: (e.g.)

• Oriented manifolds (MSO*)

Definition

A genus is a cobordism invariant for manifolds with extra structure:

It assigns to every manifold (with extra structure) an element of an abelian group A

$$M^m \mapsto \gamma(M) \in A$$

such that when *M* is a boundary (with extra structure) $\gamma(M) = 0$.

- Oriented manifolds (MSO_{*})
- Stably almost complex manifolds (MU_{*})

Definition

A genus is a cobordism invariant for manifolds with extra structure:

It assigns to every manifold (with extra structure) an element of a graded abelian group A_*

$$M^m \mapsto \gamma(M) \in A_m$$

such that when *M* is a boundary (with extra structure) $\gamma(M) = 0$.

- Oriented manifolds (MSO_{*})
- Stably almost complex manifolds (MU_{*})

Definition

A genus is a cobordism invariant for manifolds with extra structure:

It assigns to every manifold (with extra structure) an element of a graded ring R_{\ast}

$$M^m \mapsto \gamma(M) \in R_m$$

such that when *M* is a boundary (with extra structure) $\gamma(M) = 0$.

- Oriented manifolds (MSO_{*})
- Stably almost complex manifolds (MU_{*})

Definition

A genus is a cobordism invariant for manifolds with extra structure:

It assigns to every manifold (with extra structure) an element of a graded ring R_{\ast}

$$M^m \mapsto \gamma(M) \in R_m$$

such that when *M* is a boundary (with extra structure) $\gamma(M) = 0$ and for any M^m , N^n ,

$$\gamma(\textit{M} imes \textit{N}) = \gamma(\textit{M}) \cdot \gamma(\textit{N}) \in \textit{R}_{\textit{m}+\textit{n}}$$

- Oriented manifolds (MSO_{*})
- Stably almost complex manifolds (MU_{*})

Definition

A genus is a cobordism invariant for manifolds with extra structure:

It assigns to every manifold (with extra structure) an element of a graded ring R_{\ast}

$$M^m \mapsto \gamma(M) \in R_m$$

such that when *M* is a boundary (with extra structure) $\gamma(M) = 0$ and for any M^m, N^n ,

$$\gamma(\mathbf{M} imes \mathbf{N}) = \gamma(\mathbf{M}) \cdot \gamma(\mathbf{N}) \in \mathbf{R}_{m+n}$$

- Oriented manifolds with map to X (*MSO*_{*}(*X*))
- Stably almost complex manifolds with map to X (MU_{*}(X))

Definition

A genus is a cobordism invariant for manifolds with extra structure:

It assigns to every manifold (with extra structure) an element of homology theory R_*

$$M^m \mapsto \gamma(M) \in R_m(X)$$

such that when *M* is a boundary (with extra structure) $\gamma(M) = 0$ and for any M^m , N^n ,

- Oriented manifolds with map to X (*MSO*_{*}(*X*))
- Stably almost complex manifolds with map to X (MU_{*}(X))

Definition

A genus is a cobordism invariant for manifolds with extra structure:

It assigns to every manifold (with extra structure) an element of a multiplicative homology theory R_*

$$M^m \mapsto \gamma(M) \in R_m(X)$$

such that when *M* is a boundary (with extra structure) $\gamma(M) = 0$ and for any M^m , N^n ,

- Oriented manifolds with map to X (*MSO*_{*}(*X*))
- Stably almost complex manifolds with map to X (MU_{*}(X))

Definition

A genus is a cobordism invariant for manifolds with extra structure:

It assigns to every manifold (with extra structure) an element of a multiplicative homology theory R_*

$$M^m \mapsto \gamma(M) \in R_m(X)$$

such that when *M* is a boundary (with extra structure) $\gamma(M) = 0$ and for any M^m , N^n ,

$$\gamma(\mathbf{M}\times\mathbf{N})=\gamma(\mathbf{M})\cdot\gamma(\mathbf{N})\in\mathbf{R}_{m+n}(\mathbf{X}\times\mathbf{Y})$$

- Oriented manifolds with map to X (MSO_{*}(X))
- Stably almost complex manifolds with map to X (MU_{*}(X))

Extra structure: (e.g.)

- Oriented manifolds with map to X (*MSO*_{*}(*X*))
- Stably almost complex manifolds with map to X (MU_{*}(X))

ШT

- Oriented manifolds with map to X (*MSO*_{*}(*X*))
- Stably almost complex manifolds with map to X (MU_{*}(X))

Structured Genera

Genera are maps of ring spectra $MSO \rightarrow R, MU \rightarrow R$.

Structured Genera

Genera are maps of ring spectra $MSO \rightarrow R, MU \rightarrow R$.

Question

Which genera come from maps of "highly structured" ring spectra?

Question

Which genera come from maps of "highly structured" ring spectra?

MSO and *MU* are commutative *S*-algebras (E_{∞} ring spectra).

Question

Which genera come from maps of "highly structured" ring spectra?

MSO and *MU* are commutative *S*-algebras (E_{∞} ring spectra).

Which genera come from

• Maps of commutative S-algebras = E_{∞} ring spectra

Question

Which genera come from maps of "highly structured" ring spectra?

MSO and *MU* are commutative *S*-algebras (E_{∞} ring spectra).

Which genera come from

- Maps of commutative S-algebras = E_{∞} ring spectra
- Maps of *S*-algebras = A_{∞} ring spectra

Question

Which genera come from maps of "highly structured" ring spectra?

MSO and *MU* are commutative *S*-algebras (E_{∞} ring spectra).

Which genera come from

- Maps of commutative S-algebras = E_{∞} ring spectra
- Maps of *S*-algebras = A_{∞} ring spectra = E_1 ring spectra

Question

Which genera come from maps of "highly structured" ring spectra?

MSO and *MU* are commutative *S*-algebras (E_{∞} ring spectra).

Which genera come from

- Maps of commutative S-algebras = E_{∞} ring spectra
- Maps of *S*-algebras = A_{∞} ring spectra = E_1 ring spectra
- Maps of *E_n* ring spectra

Theorem

Let *R* be an E_2 ring spectrum with $\pi_n R = 0$ for all *n* odd.

M.A.Mandell (IU)

ever

Theorem

Let *R* be an E_2 ring spectrum with $\pi_n R = 0$ for all *n* odd.

Then any map of ring spectra $MU \rightarrow R$ lifts to a map of E_2 ring spectra.

Theorem

Let *R* be an E_2 ring spectrum with $\pi_n R = 0$ for all *n* odd.

Then any map of ring spectra $MU \rightarrow R$ lifts to a map of E_2 ring spectra.

If $\frac{1}{2} \in \pi_0 R$, then any map of ring spectra $MSO \rightarrow R$ lifts to a map of E_2 ring spectra.

Theorem

Let *R* be an E_2 ring spectrum with $\pi_n R = 0$ for all *n* odd.

Then any map of ring spectra $MU \rightarrow R$ lifts to a map of E_2 ring spectra.

If $\frac{1}{2} \in \pi_0 R$, then any map of ring spectra $MSO \rightarrow R$ lifts to a map of E_2 ring spectra.

Consequence: Taking R = MU, the Quillen idempotent is an E_2 map, and BP is an E_2 ring spectrum (Chadwick's IU PhD Thesis)

Independent of [Basterra-Mandell] which showed that BP is E_4 but left open the question of Quillen idempotent

Theorem

Let R be an E_{∞} ring spectrum with $\pi_n R = 0$ for all n odd. If there exits an E_{∞} ring map $MU \rightarrow R$ Then any map of ring spectra $MU \rightarrow R$ lifts to a map of E_2 ring spectra.

Consequence: Taking R = MU, the Quillen idempotent is an E_2 map, and BP is an E_2 ring spectrum (Chadwick's IU PhD Thesis)

Independent of [Basterra-Mandell] which showed that BP is E_4 but left open the question of Quillen idempotent

Theorem

Let R be an E_{∞} ring spectrum with $\pi_n R = 0$ for all n odd. If there exits an E_{∞} ring map $MU \rightarrow R$ Then any map of ring spectra $MU \rightarrow R$ lifts to a map of E_2 ring spectra.

Consequence: Taking R = MU, the Quillen idempotent is an E_2 map, and BP is an E_2 ring spectrum (Chadwick's IU PhD Thesis)

Independent of [Basterra-Mandell] which showed that BP is E_4 but left open the question of Quillen idempotent
Theorem

Let R be an E_{∞} ring spectrum with $\pi_n R = 0$ for all n odd. If there exits an E_{∞} ring map $MU \rightarrow R$ Then any map of ring spectra $MU \rightarrow R$ lifts to a map of E_2 ring spectra.

Consequence: Taking R = MU, the Quillen idempotent is an E_2 map, and BP is an E_2 ring spectrum (Chadwick's IU PhD Thesis)

Independent of [Basterra-Mandell] which showed that BP is E_4 but left open the question of Quillen idempotent

Theorem

Let *R* be an E_2 ring spectrum with $\pi_n R = 0$ for all *n* odd.

Then any map of ring spectra $MU \rightarrow R$ lifts to a map of E_2 ring spectra.

If $\frac{1}{2} \in \pi_0 R$, then any map of ring spectra $MSO \rightarrow R$ lifts to a map of E_2 ring spectra.

Theorem

Let *R* be an E_2 ring spectrum with $\pi_n R = 0$ for all *n* odd.

Then any map of ring spectra $MU \rightarrow R$ lifts to a map of E_2 ring spectra.

If $\frac{1}{2} \in \pi_0 R$, then any map of ring spectra $MSO \rightarrow R$ lifts to a map of E_2 ring spectra.

Consequence: Under the hypotheses above any map of ring spectra lifts to a map of *S*-algebras (A_{∞} ring spectra).

Theorem

Let *R* be an E_2 ring spectrum with $\pi_n R = 0$ for all *n* odd.

Then any map of ring spectra $MU \rightarrow R$ lifts to a map of E_2 ring spectra.

If $\frac{1}{2} \in \pi_0 R$, then any map of ring spectra MSO $\rightarrow R$ lifts to a map of E_2 ring spectra.

Consequence: Under the hypotheses above any map of ring spectra lifts to a map of *S*-algebras (A_{∞} ring spectra).

Proof: Calculate π_* of the space of E_2 maps and look at the map to π_* of the space of ring spectra maps.

Theorem

Let *R* be an E_2 ring spectrum with $\pi_n R = 0$ for all *n* odd.

Then any map of ring spectra $MU \rightarrow R$ lifts to a map of E_2 ring spectra.

If $\frac{1}{2} \in \pi_0 R$, then any map of ring spectra $MSO \rightarrow R$ lifts to a map of E_2 ring spectra.

Consequence: Under the hypotheses above any map of ring spectra lifts to a map of *S*-algebras (A_{∞} ring spectra).

Proof: Calculate π_0 of the space of E_2 maps and look at the map to π_0 of the space of ring spectra maps.

Pontryagin-Thom theorem

- Cobordism theories are represented by Thom spectra
- Genera are multiplicative orientations

Pontryagin-Thom theorem

- Cobordism theories are represented by Thom spectra
- Genera are multiplicative orientations

Pontryagin-Thom theorem

- Cobordism theories are represented by Thom spectra
- Genera are multiplicative orientations

Pontryagin-Thom theorem

- Cobordism theories are represented by Thom spectra
- Genera are multiplicative orientations

 $\rightarrow BU(n)$ classifying space for \mathbb{C}^n -vector bundles

 \rightarrow PU(n) total space of universal principal bundle (free contractible CW U(n)-space)

 \Rightarrow $EU(n) = PU(n) \times_{U(n)} \mathbb{C}^n$ total space of universal vector bundle

$$\neg \mathring{E}U(n) = PU(n) \times_{U(n)} (\mathbb{C}^n - \{0\})$$

 $TU(n) = PU(n)_+ \wedge_{U(n)} S^{2n}$ Thom space

山

Pontryagin-Thom theorem

- Cobordism theories are represented by Thom spectra
- Genera are multiplicative orientations

 $\begin{array}{l} BU(n) \mbox{ classifying space for \mathbb{C}^n-vector bundles}\\ PU(n) \mbox{ total space of universal principal bundle}\\ \mbox{ (free contractible CW U(n)-space)}\\ EU(n) = PU(n) \times_{U(n)} \mathbb{C}^n \mbox{ total space of universal vector bundle}\\ \mbox{ $\dot{E}U(n) = PU(n) \times_{U(n)} (\mathbb{C}^n - \{0\})$}\\ TU(n) = PU(n)_+ \wedge_{U(n)} S^{2n} \mbox{ Thom space} \end{array}$

Pontryagin-Thom theorem

- Cobordism theories are represented by Thom spectra
- Genera are multiplicative orientations

$$\begin{split} & BU(n) \text{ classifying space for } \mathbb{C}^n\text{-vector bundles} \\ & PU(n) \text{ total space of universal principal bundle} \\ & (\text{free contractible CW } U(n)\text{-space}) \\ & EU(n) = PU(n) \times_{U(n)} \mathbb{C}^n \text{ total space of universal vector bundle} \\ & \mathring{E}U(n) = PU(n) \times_{U(n)} (\mathbb{C}^n - \{0\}) \\ & TU(n) = PU(n)_+ \wedge_{U(n)} S^{2n} \text{ Thom space} \end{split}$$

Pontryagin-Thom theorem

- Cobordism theories are represented by
- Genera are multiplicative orientations

 $\begin{array}{l} BU(n) \mbox{ classifying space for \mathbb{C}^n-vector bundles}\\ PU(n) \mbox{ total space of universal principal bundle}\\ (free \mbox{ contractible CW }U(n)\mbox{-space})\\ EU(n) = PU(n) \times_{U(n)} \mathbb{C}^n \mbox{ total space of universal vector bundle}\\ \mathring{E}U(n) = PU(n) \times_{U(n)} (\mathbb{C}^n - \{0\})\\ TU(n) = PU(n) + \wedge_{U(n)} S^{2n} \mbox{ Thom space} \end{array}$

Pontryagin-Thom theorem

- Cobordism theories are represented by
- Genera are multiplicative orientations

 $\begin{array}{l} BU(n) \mbox{ classifying space for \mathbb{C}^n-vector bundles}\\ PU(n) \mbox{ total space of universal principal bundle}\\ (free \mbox{ contractible CW }U(n)\mbox{-space})\\ EU(n) = PU(n) \times_{U(n)} \mathbb{C}^n \mbox{ total space of universal vector bundle}\\ \hat{E}U(n) = PU(n) \times_{U(n)} (\mathbb{C}^n - \{0\})\\ TU(n) = PU(n)_+ \wedge_{U(n)} S^{2n} \mbox{ Thom space} \end{array}$

An *R*-orientation for \mathbb{C}^n -vector bundles is an element of $\underline{R}^{2n}(\underline{EU}(n), \underline{E}\underline{U}(n))$ that restricts to a generator of $R^{2n}(\mathbb{C}^n, \mathbb{C}^n - \{0\})$ on each fiber (of BU(n)).

Multiplicative:

■ Restricts to unit element of R²ⁿ(Cⁿ, Cⁿ - {0})

• $R^{2m}(EU(m), \mathring{E}U(m)) \otimes R^{2n}(EU(n), \mathring{E}U(n))$ $\rightarrow R^{2m+2n}((EU(m), \mathring{E}U(m)) \times (EU(n), \mathring{E}U(n)))$ $\rightarrow R^{2m+2n}(EU(m+n), \mathring{E}U(m+n))$

Excision: $R^{2n}(EU(n), \mathring{E}U(n)) \cong \widetilde{R}^{2n}(TU(n))$

 $MU = \operatorname{colim} \Sigma^{\infty}_{_{-2n}} TU(n)$

 $[MU, R] = R^0(MU) = \lim \tilde{R}^{2n}(TU(n))$

Pontryagin-Thom theorem

- Cobordism theories are represented by
- Genera are multiplicative orientations

$$\begin{split} &BU(n) \text{ classifying space for } \mathbb{C}^n\text{-vector bundles}\\ &PU(n) \text{ total space of universal principal bundle}\\ &(\text{free contractible CW } U(n)\text{-space})\\ &EU(n) = PU(n) \times_{U(n)} \mathbb{C}^n \text{ total space of universal vector bundle}\\ &\dot{E}U(n) = PU(n) \times_{U(n)} (\mathbb{C}^n - \{0\})\\ &TU(n) = PU(n)_+ \wedge_{U(n)} S^{2n} \text{ Thom space} \end{split}$$

An *R*-orientation for \mathbb{C}^n -vector bundles is an element of $R^{2n}(EU(n), \mathring{E}U(n))$ that restricts to a generator of $R^{2n}(\mathbb{C}^n, \mathbb{C}^n - \{0\})$ on each fiber (of BU(n)).

Multiplicative:

• Restricts to unit element of $R^{2n}(\mathbb{C}^n, \mathbb{C}^n - \{0\}) \cong \mathbb{R}^2$ (c) • $R^{2m}(\underline{EU(m)}, \underline{EU(m)}) \otimes R^{2n}(\underline{EU(n)}, \underline{EU(n)})$ $\rightarrow R^{2m+2n}((\underline{EU(m)}, \underline{EU(m)}) \times (\underline{EU(n)}, \underline{EU(n)}))$ $\rightarrow R^{2m+2n}(\underline{EU(m+n)}, \underline{EU(m+n)})$ Excision: $R^{2n}(\underline{EU(n)}, \underline{EU(n)}) \cong \overline{R}^{2n}(\underline{TU(n)}).$

M.A.Mandell (IU)

Pontryagin-Thom theorem

- Cobordism theories are represented by
- Genera are multiplicative orientations

$$\begin{split} &BU(n) \text{ classifying space for } \mathbb{C}^n\text{-vector bundles}\\ &PU(n) \text{ total space of universal principal bundle}\\ &(\text{iree contractible CW } U(n)\text{-space})\\ &EU(n) = PU(n) \times_{U(n)} \mathbb{C}^n \text{ total space of universal vector bundle}\\ &\tilde{E}U(n) = PU(n) \times_{U(n)} (\mathbb{C}^n - \{0\})\\ &TU(n) = PU(n)_+ \wedge_{U(n)} S^{2n} \text{ Thom space} \end{split}$$

An *R*-orientation for \mathbb{C}^n -vector bundles is an element of $R^{2n}(EU(n), \mathring{E}U(n))$ that restricts to a generator of $R^{2n}(\mathbb{C}^n, \mathbb{C}^n - \{0\})$ on each fiber (of BU(n)).

Multiplicative:

- Restricts to unit element of R²ⁿ(Cⁿ, Cⁿ {0})
- $R^{2m}(EU(m), \mathring{E}U(m)) \otimes R^{2n}(EU(n), \mathring{E}U(n))$ $\rightarrow R^{2m+2n}((EU(m), \mathring{E}U(m)) \times (EU(n), \mathring{E}U(n)))$ $\rightarrow R^{2m+2n}(EU(m+n), \mathring{E}U(m+n))$

Excision: $R^{2n}(EU(n), \mathring{E}U(n)) \cong \widetilde{R}^{2n}(TU(n))$.

 $MU = \operatorname{colim} \Sigma^{\infty}_{2n} TU(n)$

 $[MU, R] = \hat{R}^0(MU) = \lim \tilde{R}^{2n}(TU(n))$

Ш

Pontryagin-Thom theorem

- Cobordism theories are represented by
- Genera are multiplicative orientations

$$\begin{split} &BU(n) \text{ classifying space for } \mathbb{C}^n\text{-vector bundles}\\ &PU(n) \text{ total space of universal principal bundle}\\ &(\text{free contractible CW } U(n)\text{-space})\\ &EU(n) = PU(n) \times_{U(n)} \mathbb{C}^n \text{ total space of universal vector bundle}\\ &\tilde{E}U(n) = PU(n) \times_{U(n)} (\mathbb{C}^n - \{0\})\\ &TU(n) = PU(n)_+ \wedge_{U(n)} S^{2n} \text{ Thom space} \end{split}$$

An *R*-orientation for \mathbb{C}^n -vector bundles is an element of $R^{2n}(EU(n), \mathring{E}U(n))$ that restricts to a generator of $R^{2n}(\mathbb{C}^n, \mathbb{C}^n - \{0\})$ on each fiber (of BU(n)).

Multiplicative:

■ Restricts to unit element of R²ⁿ(Cⁿ, Cⁿ - {0})

Thom diagonal

 $\begin{array}{l} \mathcal{T}U(n) \xrightarrow{\sim} \mathcal{T}U(n) \wedge \mathcal{D}U(n)_{+} \\ MU \xrightarrow{\sim} MU \wedge BU_{+} \end{array}$

Gives an action

 $R^*(MU) \otimes R^*(BU) \to R^*(MU)$

Taking f to be a fixed orientation, get a map

 $R^*BU \rightarrow R^*MU$

Thom Isomorphism: This map is an isomorphism

Thom diagonal

 $MU \rightarrow MU \wedge BU_+$

Gives an action

 $R^*(MU) \otimes R^*(BU) \to R^*(MU)$

Taking f to be a fixed orientation, get a map

 $R^*BU \rightarrow R^*MU$

Thom Isomorphism: This map is an isomorphism

Taking f to be a fixed orientation, get a map

 $R^*BU \rightarrow R^*MU$

Thom Isomorphism: This map is an isomorphism

Thom diagonal

 $MU \rightarrow MU \wedge BU_+$

Gives an action

$$\sqrt[V]{R^*(MU)\otimes R^*(BU) o R^*(MU)}$$

$$\begin{array}{c} \overbrace{f: \ MU \rightarrow R} \\ g: \ \Sigma^{\infty}_{+} BU \rightarrow R \end{array} \Longrightarrow \qquad MU \rightarrow MU \wedge BU_{+} \xrightarrow{f \wedge g} R \wedge R \rightarrow R$$

Taking f to be a fixed orientation, get a map

 $R^*BU
ightarrow R^*MU$

Thom Isomorphism: This map is an isomorphism

ШT

Thom diagonal

 $MU \rightarrow MU \wedge BU_+$

Gives an action

 $R^*(MU) \otimes R^*(BU) \to R^*(MU)$

$$\begin{cases} f: MU \to R \\ g: \Sigma^{\infty}_{+}BU \to R \end{cases} \implies \qquad MU \to MU \land BU_{+} \xrightarrow{f \land g} R \land R \to R \end{cases}$$

Taking f to be a fixed orientation, get a map

 $R^*BU
ightarrow R^*MU$

Thom Isomorphism: This map is an isomorphism

山

Multiplicative Structure

Thom diagonal

 $\textit{MU} \rightarrow \textit{MU} \land \textit{BU}_+$

is a map of ring spectra [Mahowald]

Multiplicative Structure

9/18

Multiplicative Structure

Thom diagonal

 $MU \rightarrow MU \wedge BU_+$

is a map of ring spectra [Mahowald] in fact E_{∞} ring spectra [Lewis]

Multiplicative Orientations

For a multiplicative orientation σ

Thom map

$$(g: \Sigma^{\infty}_{+} BU \to R) \implies (MU \to MU \land BU_{+} \xrightarrow{\sigma \land g} R \land R \to R)$$

• Ring spectra maps $\Sigma^{\infty}_{+}BU \to R$ = *H*-space maps $BU \to \Omega^{\infty}R^{\times}$ in $R^{0}(BU)$

to

• Ring spectra maps $MU \rightarrow R$ in $R^0(MU)$

Multiplicative Orientations

For a multiplicative orientation σ

Thom map

 $g \colon \Sigma^{\infty}_{+} BU o R \implies MU o MU \wedge BU_{+} \xrightarrow{\sigma \wedge g} R \wedge R o R$

takes • Ring spectra maps, $\Sigma_{+}^{\infty} BU \rightarrow R$ = *H*-space maps $BU \rightarrow \Omega^{\infty} R^{\times}_{\uparrow\uparrow}$ in $R^{0}(BU)$

to

• Ring spectra maps $MU \rightarrow R$ in $R^0(MU)$

Multiplicative Orientations

For a multiplicative orientation $\boldsymbol{\sigma}$

Thom map

 $g: \Sigma^{\infty}_{+} BU \rightarrow R$

 $\implies \qquad MU \rightarrow MU \land BU_{+} \xrightarrow{\sigma \land g} R \land R \rightarrow R$

takes

• Ring spectra maps
$$\Sigma^{\infty}_{+}BU \rightarrow R$$

= *H*-space maps $BU \rightarrow \Omega^{\infty}R^{\times}$ in $R^{0}(BU)$

to

• Ring spectra maps $MU \rightarrow R$ in $R^0(MU)$

"Quillen's Theorem"

For a multiplicative orientation, the Thom map takes maps of *H*-spaces in $[BU, \Omega^{\infty}R^{\times}] = R^0(BU)$ to maps of ring spectra in $[MU, R] = R^0(MU)$

Theorem (Hirzebruch, Dold, Quillen)

Maps of ring spectra in $\mathbb{R}^0(MU)$ are in one-to-one correspondence with elements of $\tilde{\mathbb{R}}^2(TU(1))$ that restrict to the unit element of $\tilde{\mathbb{R}}^2(S^2)$

When a map of ring spectra $MU \rightarrow R$ exists, then:

- The maps of ring spectra in R⁰(MU) are exactly the maps that correspond to maps of H-spaces in R⁰(BU) and
- Are in one-to-one correspondence with elements of R⁰(BU(1)) via the map on R⁰ induced by BU(1) → BU.

Theorem (Hirzebruch, Dold, Quillen)

Maps of ring spectra in $R^0(MU)$ are in one-to-one correspondence with elements of $\tilde{R}^2(TU(1))$ that restrict to the unit element of $\tilde{R}^2(S^2)$

When a map of ring spectra $MU \rightarrow R$ exists, then:

- The maps of ring spectra in R⁰(MU) are exactly the maps that correspond to maps of H-spaces in R⁰(BU) and
- Are in one-to-one correspondence with elements of R⁰(BU(1)) via the map on R⁰ induced by BU(1) → BU.

Theorem (Hirzebruch, Dold, Quillen)

Maps of ring spectra in $R^0(MU)$ are in one-to-one correspondence with elements of $\tilde{R}^2(TU(1))$ that restrict to the unit element of $\tilde{R}^2(S^2)$

When a map of ring spectra $MU \rightarrow R$ exists, then:

- The maps of ring spectra in R⁰(MU) are exactly the maps that correspond to maps of H-spaces in R⁰(BU) and
- Are in one-to-one correspondence with elements of R⁰(BU(1)) via the map on R⁰ induced by BU(1) → BU.

Theorem (Hirzebruch, Dold, Quillen)

Maps of ring spectra in $\mathbb{R}^0(MU)$ are in one-to-one correspondence with elements of $\widetilde{\mathbb{R}^2}(TU(1))$ that restrict to the unit element of $\widetilde{\mathbb{R}^2}(S^2)$ When a map of ring spectra $MU \to R$ exists, then:

- The maps of ring spectra in R⁰(MU) are exactly the maps that correspond to maps of H-spaces in R⁰(BU) and
- Are in one-to-one correspondence with elements of $(\mathbb{R}^{0}(\mathbb{BU}(1)))$ via the map on \mathbb{R}^{0} induced by $\mathbb{BU}(1) \rightarrow \mathbb{BU}$.

Theorem (Hirzebruch, Dold, Quillen)

Maps of ring spectra in $\mathbb{R}^{0}(\mathbb{M}U)$ are in one-to-one correspondence with elements of $\mathbb{R}^{2}(\mathbb{T}U(1))$ that restrict to the unit element of $\mathbb{R}^{2}(S^{2})$ When a map of ring spectra $\mathbb{M}U \to \mathbb{R}$ exists, When a map of ring spectra $\mathbb{M}U \to \mathbb{R}$ exists, when \mathbb{R} is even

- The maps of ring spectra in R⁰(MU) are exactly the maps that correspond to maps of H-spaces in R⁰(BU) and
- Are in one-to-one correspondence with elements of $R^0(BU(1))$ via the map on R^0 induced by $BU(1) \rightarrow BU_{11}$

E_n genera

Assume that R is E_n and $\sigma: MU \to R$ is E_n Thom map

 $\underbrace{g: \Sigma^{\infty}_{+} BU \to R}_{\text{Fact:}} \implies \underbrace{MU \to MU \land BU_{+} \xrightarrow{\sigma \land g} R \land R \to R}_{\text{Fact:}}$

• Space of E_n ring maps $\Sigma^{\infty}_+ BU \to R$ isomorphic to space of E_n maps $BU \to \Omega^{\infty} R^{\times}$ [May-Quinn-Ray-Tornehave]

• If *R* is E_n then $R \wedge R \rightarrow R$ is E_{n-1} [Dunn]

E_n genera

Assume that *R* is E_n and $\sigma: MU \to R$ is E_n

Thom map

$$\underbrace{g: \Sigma^{\infty}_{+} BU \to R}_{+} \implies MU \to MU \land BU_{+} \xrightarrow{\sigma \land g} R \land R \to R$$

Fact:

• Space of E_n ring maps $\Sigma^{\infty}_+ BU \to R$ isomorphic to space of E_n maps $BU \to \Omega^{\infty} R^{\times}_{-}$ [May-Quinn-Ray-Tornehave]

• If *R* is E_n then $R \wedge R \rightarrow \overline{R}$ is E_{n-1} [Dunn]

E_n genera

Assume that *R* is E_n and $\sigma: MU \to R$ is E_n

Thom map

 $g\colon \Sigma^{\infty}_{+}BU \to R \qquad \Longrightarrow \qquad MU \to MU \land BU_{+} \xrightarrow{\sigma \land g} R \land R \to R$

Fact:

Space of *E_n* ring maps Σ[∞]₊ *BU* → *R* isomorphic to space of *E_n* maps *BU* → Ω[∞]*R*[×] [May-Quinn-Ray-Tornehave]

• If
$$R$$
 is E_n then $R \land R \to R$ is E_{n-1} [Dunn]

En genera

Assume that
$$R$$
 is E_{n+1} and $\sigma: MU \rightarrow R$ is E_n for f if f is E_n for f if f is E_n for f if f is E_n for f is E_n

Space of *E_n* ring maps Σ[∞]₊*BU* → *R* isomorphic to space of *E_n* maps *BU* → Ω[∞]*R*[×] [May-Quinn-Ray-Tornehave]

• If
$$R$$
 is E_{n+1} then $R \land R \to R$ is E_n [Dunn
E_n genera

Assume that *R* is E_{n+1} and $\sigma: MU \to R$ is E_n

Thom map

 $\underbrace{g} \colon \Sigma^{\infty}_{+} BU \to R \qquad \Longrightarrow \qquad MU \to MU \land BU_{+} \xrightarrow{\sigma \land g} R \land R \to R$

Fact:

- Space of *E_n* ring maps Σ[∞]₊*BU* → *R* isomorphic to space of *E_n* maps *BU* → Ω[∞]*R*[×] [May-Quinn-Ray-Tornehave]
- If R is E_{n+1} then $R \wedge R \rightarrow R$ is E_n [Dunn]

If non empty, we get a map $\mathcal{E}_n(BU, \Omega^{\infty} R^{\times}) \to \mathcal{E}_n(MU, R)$.

Observation

If *R* is E_{n+1} and then we have a natural action of the space of E_n maps $\mathcal{E}_n(BU, \Omega^{\infty}R^{\times})$ on the space of E_n ring maps $\mathcal{E}_n(MU, R)$.

M.A.Mandell (IU)

E_n genera

Assume that *R* is E_{n+1} and $\sigma: MU \to R$ is E_n

Thom map

 $g \colon \Sigma^{\infty}_{+} \mathcal{B}\mathcal{U} o \mathcal{R} \implies \mathcal{M}\mathcal{U} o \mathcal{M}\mathcal{U} \wedge \mathcal{B}\mathcal{U}_{+} \xrightarrow{\sigma \wedge g} \mathcal{R} \wedge \mathcal{R} o \mathcal{R}$

Fact:

- Space of *E_n* ring maps Σ[∞]₊*BU* → *R* isomorphic to space of *E_n* maps *BU* → Ω[∞]*R*[×] [May-Quinn-Ray-Tornehave]
- If R is E_{n+1} then $R \wedge R \rightarrow R$ is E_n [Dunn]

Observation

If *R* is E_{n+1} and then we have a natural action of the space of E_n maps $\mathcal{E}_n(BU, \Omega^{\infty} R^{\times})$ on the space of E_n ring maps $\mathcal{E}_n(MU, R)$.

If non empty, we get a map $\widetilde{\mathcal{E}_n(BU, \Omega^{\infty}R^{\times})} \rightarrow \widetilde{\mathcal{E}_n(MU, R)}$.

Assume that *R* is E_{n+1} and $\sigma: MU \to R$ is E_n

Thom map

 $g \colon \Sigma^{\infty}_{+} \mathcal{B}\mathcal{U} o \mathcal{R} \implies \mathcal{M}\mathcal{U} o \mathcal{M}\mathcal{U} \wedge \mathcal{B}\mathcal{U}_{+} \xrightarrow{\sigma \wedge g} \mathcal{R} \wedge \mathcal{R} o \mathcal{R}$

induces a map $\mathcal{E}_n(BU, \Omega^{\infty}R^{\times}) \simeq \mathcal{E}_n(\Sigma^{\infty}_+BU, R) \to \mathcal{E}_n(MU, R)$

Theorem

This map is a weak equivalence.

Suffices to consider the case when *R* is connective
Look at Postnikov tower of *R*

Assume that R is E_{n+1} and $\sigma: MU \to R$ is E_n

Thom map

 $g \colon \Sigma^{\infty}_{+} BU o R \implies MU o MU \wedge BU_{+} \xrightarrow{\sigma \wedge g} R \wedge R o R$

induces a map $\mathcal{E}_n(BU, \Omega^{\infty} R^{\times}) \simeq \mathcal{E}_n(\Sigma^{\infty}_+ BU, R) \rightarrow \mathcal{E}_n(MU, R)$

Theorem

This map is a weak equivalence.

Suffices to consider the case when *R* is connective
Look at Postnikov tower of *R*

Assume that *R* is E_{n+1} and $\sigma: MU \rightarrow R$ is E_n

Thom map

 $g \colon \Sigma^{\infty}_{+} BU \to R \qquad \Longrightarrow \qquad MU \to MU \land BU_{+} \xrightarrow{\sigma \land g} R \land R \to R$

induces a map $\mathcal{E}_n(BU, \Omega^{\infty} R^{\times}) \simeq \mathcal{E}_n(\Sigma^{\infty}_+ BU, R) - (\widehat{\mathcal{E}}_n(MU, R))$

Theorem

This map is a weak equivalence.

Suffices to consider the case when *R* is connective
Look at Postnikov tower of *R*

Assume that *R* is E_{n+1} and $\sigma: MU \rightarrow R$ is E_n

Thom map

 $g \colon \Sigma^{\infty}_{+} \mathcal{B}\mathcal{U} o \mathcal{R} \implies \mathcal{M}\mathcal{U} o \mathcal{M}\mathcal{U} \wedge \mathcal{B}\mathcal{U}_{+} \xrightarrow{\sigma \wedge g} \mathcal{R} \wedge \mathcal{R} o \mathcal{R}$

induces a map $\mathcal{E}_n(BU, \Omega^{\infty} R^{\times}) \simeq \mathcal{E}_n(\Sigma^{\infty}_+ BU, R) \to \mathcal{E}_n(MU, R)$

Theorem

This map is a weak equivalence.

- Suffices to consider the case when R is connective
- Look at Postnikov tower of R

Let *R* be a connective E_n ring spectrum and let $Z = \pi_0 R$.

Form Postnikov tower by killing higher homotopy groups

 $R
ightarrow \cdots
ightarrow R\langle 2
angle
ightarrow R\langle 1
angle
ightarrow R\langle 0
angle = HZ$

Let *R* be a connective E_n ring spectrum and let $Z = \pi_0 R$.

Form Postnikov tower by killing higher homotopy groups

 $R \rightarrow \cdots \rightarrow R\langle 2 \rangle \rightarrow R\langle 1 \rangle \rightarrow R\langle 0 \rangle = HZ$

Let *R* be a connective E_n ring spectrum and let $Z = \pi_0 R$.

Form Postnikov tower by killing higher homotopy groups

$$R \rightarrow \cdots \rightarrow R\langle 2 \rangle \rightarrow R\langle 1 \rangle \rightarrow R\langle 0 \rangle = HZ$$

Let *R* be a connective E_n ring spectrum and let $Z = \pi_0 R$.

Form Postnikov tower by killing higher homotopy groups

 $R \rightarrow \cdots \rightarrow R\langle 2 \rangle \rightarrow R\langle 1 \rangle \rightarrow R\langle 0 \rangle = HZ$

Let *R* be a connective E_n ring spectrum and let $Z = \pi_0 R$.

Form Postnikov tower by killing higher homotopy groups

$$m{R}
ightarrow \cdots
ightarrow m{R}\langle 2
angle
ightarrow m{R}\langle 1
angle
ightarrow m{R}\langle 0
angle = HZ$$

Let *R* be a connective E_n ring spectrum and let $Z = \pi_0 R$.

Form Postnikov tower by killing higher homotopy groups

$$R
ightarrow \cdots
ightarrow R\langle 2
angle
ightarrow R\langle 1
angle
ightarrow R\langle 0
angle = HZ$$

Let *R* be a connective E_n ring spectrum and let $Z = \pi_0 R$.

Form Postnikov tower by killing higher homotopy groups

$$R
ightarrow \cdots
ightarrow R\langle 2
angle
ightarrow R\langle 1
angle
ightarrow R\langle 0
angle = HZ$$

Let *R* be a connective E_n ring spectrum and let $Z = \pi_0 R$.

Form Postnikov tower by killing higher homotopy groups

$$R
ightarrow \cdots
ightarrow R\langle 2
angle
ightarrow R\langle 1
angle
ightarrow R\langle 0
angle = HZ$$

in the category of E_n ring spectra.

Magic Fact (Kriz)

This is a tower of principal fibrations of E_n ring spectra

$$\begin{array}{c} R\langle j+1\rangle \longrightarrow HZ \\ \downarrow & \downarrow \\ R\langle j\rangle \xrightarrow[k_{j+1}]{} HZ \lor \Sigma^{j+2} H\pi_{j+1}R \end{array}$$

Let *R* be a connective E_n ring spectrum and let $Z = \pi_0 R$.

Form Postnikov tower by killing higher homotopy groups

$$R
ightarrow \cdots
ightarrow R\langle 2
angle
ightarrow R\langle 1
angle
ightarrow R\langle 0
angle = HZ$$

in the category of E_n ring spectra.

Magic Fact (Kriz)

This is a tower of principal fibrations of E_n ring spectra

$$\begin{array}{c} R\langle j+1\rangle \longrightarrow HZ \\ \downarrow & \downarrow \\ R\langle j\rangle \xrightarrow[k_{j+1}]{} HZ \lor \Sigma^{j+2} H\pi_{j+1}R \end{array}$$

$$\begin{array}{c} R\langle j+1\rangle \longrightarrow HZ \\ \downarrow & \downarrow \\ R\langle j\rangle \xrightarrow[k_{j+1}]{} HZ \vee \Sigma^{j+2} H\pi_{j+1}R \end{array}$$

$$H^*_{\mathcal{E}_n}(A; M) := \pi_0 \mathcal{E}_{n/HZ}(A, HZ \vee \Sigma^* HM)$$

 $\begin{array}{c} \downarrow \\ R\langle j \rangle \xrightarrow[k_{j+1}]{} HZ \lor \underbrace{\downarrow}^{j+2} H\pi_{j+1}R \end{array}$ • Obstruction in $H^{j+2}(A; \pi_{i+1}R)$ to

 $R\langle j+1\rangle \longrightarrow HZ$

The space of lifts is either empty or is a "free orbit" on the

1

$$E_{p,q}^{2} = H_{\mathcal{E}_{n}}^{p}(A; \pi_{q}R) \implies \pi_{q-p}\mathcal{E}_{n}(A, R).$$

$$H^*_{\mathcal{E}_n}(A; M) := \pi_0 \mathcal{E}_{n/HZ}(A, HZ \vee \Sigma^* HM)$$

Obstruction theory

$$\begin{array}{c} R\langle j+1\rangle \longrightarrow HZ \\ \downarrow & \downarrow \\ R\langle j\rangle \xrightarrow[k_{j+1}]{} HZ \lor \Sigma^{j+2}H\pi_{j+1}R \end{array}$$

• Obstruction in $H^{j+2}(A; \pi_{j+1}R)$ to lifting an E_n ring map $A \to R\langle j \rangle$ to an E_n ring map $A \to R\langle j+1 \rangle$

 The space of lifts is either empty or is a "free orbit" on the grouplike topological monoid

 $\mathcal{E}_{n/HZ}(A, HZ \vee \Sigma^{j+1}H\pi_{j+1}R) \simeq \Omega \mathcal{E}_{n/HZ}(A, HZ \vee \Sigma^{j+2}H\pi_{j+1}R)$

Atiyah-Hirzebruch Spectral Sequence

For E_n ring spectra A, R (with mild hypotheses on A), there is a natural "obstructed" spectral sequence

$$E_{p,q}^2 = H_{\mathcal{E}_n}^p(A; \pi_q R) \Longrightarrow \pi_{q-p} \mathcal{E}_n(A, R).$$

$$H^*_{\mathcal{E}_n}(A; M) := \pi_0 \mathcal{E}_{n/HZ}(A, HZ \vee \Sigma^* HM)$$

Obstruction theory

• Obstruction in $H_{\mathcal{I}, \gamma}^{j+2}(A; \pi_{j+1}R)$ to lifting an E_n ring map $A \to R\langle j \rangle$ to an E_n ring map $A \to R\langle j+1 \rangle$

• The space of lifts is either empty or is a "free orbit" on the grouplike topological monoid

 $\mathcal{E}_{n/HZ}(A, HZ \vee \Sigma^{j+1} H \pi_{j+1} R) \simeq \Omega \mathcal{E}_{n/HZ}(A, HZ \vee \Sigma^{j+2} H \pi_{j+1} R)$

Atiyah-Hirzebruch Spectral Sequence

For E_n ring spectra A, R (with mild hypotheses on A), there is a natural "obstructed" spectral sequence

$$E_{p,q}^{2} = H_{\mathcal{E}_{n}}^{p}(A; \pi_{q}R) \implies \pi_{q-p}\mathcal{E}_{n}(A, R).$$

$$H^*_{\mathcal{E}_n}(A; M) := \pi_0 \mathcal{E}_{n/HZ}(A, HZ \vee \Sigma^* HM)$$

Obstruction theory

 $\begin{array}{c} R\langle j+1\rangle \longrightarrow HZ \\ \downarrow & \downarrow \end{array}$ $\stackrel{\checkmark}{R\langle j\rangle} \xrightarrow[k_{i+1}]{} HZ \vee \Sigma^{j+2} H\pi_{j+1} R$ • Obstruction in $H^{j+2}(A; \pi_{i+1}R)$ to

lifting an E_n ring map $A \rightarrow R\langle j \rangle$ to an E_n ring map $A \rightarrow R\langle j+1 \rangle$

 The space of lifts is either empty or is a "free orbit" on the grouplike topological monoid

 $\mathcal{E}_{n/HZ}(A, HZ \vee \Sigma^{j+1} H \pi_{i+1} R) \simeq \Omega \mathcal{E}_{n/HZ}(A, HZ \vee \Sigma^{j+2} H \pi_{i+1} R)$

$$E_{p,q}^{2} = H_{\mathcal{E}_{n}}^{p}(A; \pi_{q}R) \implies \pi_{q-p}\mathcal{E}_{n}(A, R).$$

$$H_{\mathcal{E}_n}^*(A; M) := \pi_0 \mathcal{E}_{n/HZ}(A, HZ \vee \Sigma^* HM)$$
Obstruction theory
$$Obstruction in H^{j+2}(A; \pi_{j+1}R) to$$
Ifting an E_n ring map $A \to R\langle j \rangle$ to an E_n ring map $A \to R\langle j + 1 \rangle$
The space of lifts is either empty or is a "free orbit" on the grouplike topological monoid
$$E_{n/HZ}(A, HZ \vee \Sigma^{j+1}H\pi_{j+1}R) \simeq \Omega \mathcal{E}_{n/HZ}(A, HZ \vee \Sigma^{j+2}H\pi_{j+1}R)$$

Atiyah-Hirzebruch Spectral Sequence

For E_n ring spectra A, R (with mild hypotheses on A), there is a natural "obstructed" spectral sequence

$$E_{p,q}^2 = H_{\mathcal{E}_n}^p(A; \pi_q R) \Longrightarrow \pi_{q-p} \mathcal{E}_n(A, R).$$

$$H^*_{\mathcal{E}_n}(A; M) := \pi_0 \mathcal{E}_{n/HZ}(A, HZ \vee \Sigma^* HM)$$

Obstruction theory

 $\hat{R\langle j\rangle} \xrightarrow[k_{i+1}]{} HZ \vee \Sigma^{j+2} H\pi_{j+1} R$ • Obstruction in $H^{j+2}(A; \pi_{i+1}R)$ to lifting an E_n ring map $A \rightarrow R\langle j \rangle$ to an E_n ring map $A \rightarrow R\langle j+1 \rangle$

 $R\langle j+1\rangle \longrightarrow HZ$ \downarrow \downarrow

 The space of lifts is either empty or is a "free orbit" on the grouplike topological monoid

$$(\overbrace{\mathcal{E}_{n/HZ}(A, HZ \vee \Sigma^{j+1}H\pi_{j+1}R)}^{\simeq} \Omega \mathcal{E}_{n/HZ}(A, HZ \vee \Sigma^{j+2}H\pi_{j+1}R))$$

Atiyah-Hirzebruch Spectral Sequence

For E_n ring spectra A, R (with mild hypotheses on A), there is a natural "obstructed" spectral sequence

Thom isomorphism: $HZ \land MU \xrightarrow{\simeq} HZ \land BU_+$ as $E_n HZ$ -algebras.

 $\textit{HZ} \land \textit{MU} \rightarrow \textit{HZ} \land \textit{MU} \land \textit{BU}_{+} \rightarrow \textit{HZ} \land \textit{HZ} \land \textit{BU}_{+} \rightarrow \textit{HZ} \land \textit{BU}_{+}$

$$\implies H^*_{\mathcal{E}_n}(\Sigma^{\infty}_+ BU; -) \xrightarrow{\simeq} H^*_{\mathcal{E}_n}(MU; -)$$

Consequence

For R an E_{n+1} ring spectrum and $\sigma \colon MU \to R$ an E_n ring map, the Thom map induces an isomorphism on E^2 -terms

$$H^{p}_{\mathcal{E}_{n}}(\Sigma^{\infty}_{+}BU;\pi_{q}R) \xrightarrow{\cong} H^{p}_{\mathcal{E}_{n}}(MU;\pi_{q}R)$$

and an isomorphism

$$\pi_*\mathcal{E}_n(\Sigma^{\infty}_+BU,R)\xrightarrow{\cong}\pi_*\mathcal{E}_n(MU,R)$$

Nothing special about BU/MU here; works for any E_n Thom spectrum. Ψ

Thom isomorphism: $HZ \land MU \xrightarrow{\simeq} HZ \land BU_+$ as $E_n HZ$ -algebras.

 $\textit{HZ} \land \textit{MU} \rightarrow \textit{HZ} \land \textit{MU} \land \textit{BU}_{+} \rightarrow \textit{HZ} \land \textit{HZ} \land \textit{BU}_{+} \rightarrow \textit{HZ} \land \textit{BU}_{+}$

$$\implies \qquad H^*_{\mathcal{E}_n}(\Sigma^{\infty}_+ BU; -) \xrightarrow{\simeq} H^*_{\mathcal{E}_n}(MU; -)$$

Consequence

For *R* an E_{n+1} ring spectrum and $\sigma: MU \to R$ an E_n ring map, the Thom map induces an isomorphism on E^2 -terms

$$H^p_{\mathcal{E}_n}(\Sigma^{\infty}_+ BU; \pi_q R) \xrightarrow{\cong} H^p_{\mathcal{E}_n}(MU; \pi_q R)$$

and an isomorphism

$$\pi_*\mathcal{E}_n(\Sigma^\infty_+ BU, R) \xrightarrow{\cong} \pi_*\mathcal{E}_n(MU, R)$$

Nothing special about BU/MU here; works for any E_n Thom spectrum.

Thom isomorphism: $HZ \land MU \xrightarrow{\simeq} HZ \land BU_+$ as $E_n HZ$ -algebras.

 $\textit{HZ} \land \textit{MU} \rightarrow \textit{HZ} \land \textit{MU} \land \textit{BU}_{+} \rightarrow \textit{HZ} \land \textit{HZ} \land \textit{BU}_{+} \rightarrow \textit{HZ} \land \textit{BU}_{+}$

$$\implies \qquad H^*_{\mathcal{E}_n}(\Sigma^{\infty}_+ BU; -) \xrightarrow{\simeq} H^*_{\mathcal{E}_n}(MU; -)$$

Consequence

For *R* an E_{n+1} ring spectrum and $\sigma: MU \to R$ an E_n ring map, the Thom map induces an isomorphism on E^2 -terms

$$H^{p}_{\mathcal{E}_{n}}(\Sigma^{\infty}_{+}BU;\pi_{q}R)\xrightarrow{\cong} H^{p}_{\mathcal{E}_{n}}(MU;\pi_{q}R)$$

and an isomorphism

$$\pi_*\mathcal{E}_n(\Sigma^{\infty}_+BU,R) \xrightarrow{\cong} \pi_*\mathcal{E}_n(MU,R)$$

Nothing special about BU/MU here; works for any E_n Thom spectrum.

Thom isomorphism: $HZ \land MU \xrightarrow{\simeq} HZ \land BU_+$ as $E_n HZ$ -algebras.

 $\textit{HZ} \land \textit{MU} \rightarrow \textit{HZ} \land \textit{MU} \land \textit{BU}_{+} \rightarrow \textit{HZ} \land \textit{HZ} \land \textit{BU}_{+} \rightarrow \textit{HZ} \land \textit{BU}_{+}$

$$\implies \qquad H^*_{\mathcal{E}_n}(\Sigma^{\infty}_+ BU; -) \xrightarrow{\simeq} H^*_{\mathcal{E}_n}(MU; -)$$

Consequence

For *R* an E_{n+1} ring spectrum and $\sigma: MU \to R$ an E_n ring map, the Thom map induces an isomorphism on E^2 -terms

$$H^p_{\mathcal{E}_p}(\Sigma^{\infty}_+ BU; \pi_q R) \xrightarrow{\cong} H^p_{\mathcal{E}_p}(MU; \pi_q R)$$

and an isomorphism

$$\pi_*\mathcal{E}_n(\Sigma^{\infty}_+BU,R) \xrightarrow{\cong} \pi_*\mathcal{E}_n(MU,R)$$

Nothing special about BU/MU here; works for any E_n Thom spectrum.

$$\mathcal{E}_n(\Sigma^{\infty}_+ BU, R) \simeq \mathcal{E}_n(BU, \Omega^{\infty} R^{\times})$$

= $\mathcal{E}_n(BU, (\Omega^{\infty} R^{\times})_1)$
 $\simeq \mathcal{U}(B^n BU, B^n(\Omega^{\infty} R)_1)$

Compute using "Atiyah-Hirzebruch spectral sequence"

 $H^{p}(B^{n}BU; R_{q}) = H^{p}(B^{n}BU; \pi_{q+n}(B^{n}(\Omega^{\infty}R)_{1}))$ $\implies \pi_{q+n-p}\mathcal{U}(B^{n}BU, B^{n}(\Omega^{\infty}R)_{1})$

For n = 2,

$$H^*(B^2BU) = H^*(BSU) = \mathbb{Z}[c_2, c_3, \ldots]$$

and

 $H^*(BSU) \to H^*(\Sigma^2 BU(1))$

is surjective.

M.A.Mandell (IU)

ШT

 $\mathcal{E}_n(\Sigma^{\infty}_+ BU, R) \simeq \mathcal{E}_n(BU, \Omega^{\infty} R^{\times})$ = $\mathcal{E}_n(BU, (\Omega^{\infty} R^{\times})_1)$ $\simeq \mathcal{U}(B^n BU, B^n(\Omega^{\infty} R)_1)$

Compute using "Atiyah-Hirzebruch spectral sequence"

 $H^{p}(B^{n}BU; R_{q}) = H^{p}(B^{n}BU; \pi_{q+n}(B^{n}(\Omega^{\infty}R)_{1}))$ $\implies \pi_{q+n-p}\mathcal{U}(B^{n}BU, B^{n}(\Omega^{\infty}R)_{1})$

For n = 2,

$$H^*(B^2BU) = H^*(BSU) = \mathbb{Z}[c_2, c_3, \ldots]$$

and

 $H^*(BSU) \to H^*(\Sigma^2 BU(1))$

is surjective.

M.A.Mandell (IU)

$\mathcal{E}_n(\Sigma^{\infty}_+ BU, R) \simeq \mathcal{E}_n(BU, \Omega^{\infty} R^{\times})$ = $\mathcal{E}_n(BU, (\Omega^{\infty} R^{\times})_1)$ $\simeq \mathcal{U}(B^n BU, B^n(\Omega^{\infty} R)_1)$

Compute using "Atiyah-Hirzebruch spectral sequence"

 $H^{p}(B^{n}BU; R_{q}) = H^{p}(B^{n}BU; \pi_{q+n}(B^{n}(\Omega^{\infty}R)_{1}))$ $\implies \pi_{q+n-p}\mathcal{U}(B^{n}BU, B^{n}(\Omega^{\infty}R)_{1})$

For n = 2,

$$H^*(B^2BU) = H^*(BSU) = \mathbb{Z}[c_2, c_3, \ldots]$$

and

 $H^*(BSU) \to H^*(\Sigma^2 BU(1))$

is surjective.

M.A.Mandell (IU)

$$\mathcal{E}_{n}(\Sigma^{\infty}_{+}BU, R) \simeq \mathcal{E}_{n}(BU, \Omega^{\infty}R^{\times})$$

= $\mathcal{E}_{n}(BU, (\Omega^{\infty}R^{\times})_{1})$
 $\simeq \mathcal{U}(B^{n}BU, B^{n}(\Omega^{\infty}R)_{1})$

Compute using "Atiyah-Hirzebruch spectral sequence"

 $H^{p}(B^{n}BU; R_{q}) = H^{p}(B^{n}BU; \pi_{q+n}(B^{n}(\Omega^{\infty}R)_{1}))$ $\implies \pi_{q+n-p}\mathcal{U}(B^{n}BU, B^{n}(\Omega^{\infty}R)_{1})$

For n = 2,

$$H^*(B^2BU) = H^*(BSU) = \mathbb{Z}[c_2, c_3, \ldots]$$

and

 $H^*(BSU) \to H^*(\Sigma^2 BU(1))$

is surjective.

M.A.Mandell (IU)

ШT

$$\mathcal{E}_n(\Sigma^{\infty}_+ BU, R) \simeq \mathcal{E}_n(BU, \Omega^{\infty} R^{\times})$$

= $\mathcal{E}_n(BU, (\Omega^{\infty} R^{\times})_1)$
 $\simeq \mathcal{U}(B^n BU, B^n(\Omega^{\infty} R)_1)$

Compute using "Atiyah-Hirzebruch spectral sequence"

$$H^{p}(B^{n}BU; R_{q}) = H^{p}(B^{n}BU; \pi_{q+n}(B^{n}(\Omega^{\infty}R)_{1}))$$

$$\implies \pi_{q+n-p}\mathcal{U}(B^{n}BU, B^{n}(\Omega^{\infty}R)_{1})$$

For n = 2

$$H^*(B^2BU) = H^*(BSU) = \mathbb{Z}[c_2, c_3, \ldots]$$

and

 $H^*(BSU) \to H^*(\Sigma^2 BU(1))$

is surjective.

$$\mathcal{E}_n(\Sigma^{\infty}_+ BU, R) \simeq \mathcal{E}_n(BU, \Omega^{\infty} R^{\times})$$

= $\mathcal{E}_n(BU, (\Omega^{\infty} R^{\times})_1)$
 $\simeq \mathcal{U}(B^n BU, B^n(\Omega^{\infty} R)_1)$

Compute using "Atiyah-Hirzebruch spectral sequence"

$$H^{p}(B^{n}BU; R_{q}) = H^{p}(B^{n}BU; \pi_{q+n}(B^{n}(\Omega^{\infty}R)_{1}))$$

$$\implies \pi_{q+n-p}\mathcal{U}(B^{n}BU, B^{n}(\Omega^{\infty}R)_{1})$$

For *n* = 2,

$$H^*(B^2BU) = H^*(BSU) = \mathbb{Z}[c_2, c_3, \ldots]$$

and

$$H^*(BSU) \rightarrow H^*(\Sigma^2 BU(1))$$

is surjective.

$$\mathcal{E}_{n}(\Sigma_{+}^{\infty}BU, R) \simeq \mathcal{E}_{n}(BU, \Omega^{\infty}R^{\times})$$

$$= \mathcal{E}_{n}(BU, (\Omega^{\infty}R^{\times})_{1})$$

$$\simeq \mathcal{U}(B^{n}BU, B^{n}(\Omega^{\infty}R)_{1})$$

Compute using "Atiyah-Hirzebruch spectral sequence"

$$H^{p}(B^{n}BU; R_{q}) = H^{p}(B^{n}BU; \pi_{q+n}(B^{n}(\Omega^{\infty}R)_{1}))$$

$$\implies \pi_{q+n-p}\mathcal{U}(B^{n}BU, B^{n}(\Omega^{\infty}R)_{1})$$

For n = 2, $H^*(B^2BU) = H^*(BSU) = \mathbb{Z}[c_2, c_3, \ldots]$ and $H^*(BSU) \rightarrow H^*(\Sigma^2 BU(1))$ $\Lambda \sim$ is surjective. M.A.Mandell (IU) En Genera Apr 2014 17/18

Theorem

If R is an even E_3 ring spectrum, then $\mathcal{E}_2(MU, R) \simeq \mathcal{E}_2(BU, \Omega^{\infty} R^{\times})$ and $\pi_{-*}\mathcal{E}_2(BU, \Omega^{\infty} R^{\times}) \rightarrow R^*(BU(1))$ is surjective. Thus, every map of ring spectra $MU \rightarrow R$ lifts to a map of E_2 ring spectra.

What about for R just E_2 ?

 $H^*_{\mathcal{E}_2}(MU;\pi) \cong H^*_{\mathcal{E}_2}(\Sigma^{\infty}_+ BU;\pi) \cong H^{*+2}(B^n BU;\pi)$

 $= H^{*+2}(BSU;\pi) \twoheadrightarrow H^*(BU(1);\pi)$

Careful argument with "Atiyah-Hirzebruch spectral sequence"

Theorem

If R is an even E_2 ring spectrum then every map of ring spectra $MU \rightarrow R$ lifts to a map of E_2 ring spectra.

Theorem

If R is an even E_3 ring spectrum, then $\mathcal{E}_2(MU, R) \simeq \mathcal{E}_2(BU, \Omega^{\infty} R^{\times})$ and $\pi_{-*}\mathcal{E}_2(BU, \Omega^{\infty} R^{\times}) \rightarrow R^*(BU(1))$ is surjective. Thus, every map of ring spectra $MU \rightarrow R$ lifts to a map of E_2 ring spectra.

What about for R just E_2 ?

 $H^*_{\mathcal{E}_2}(MU;\pi) \cong H^*_{\mathcal{E}_2}(\Sigma^{\infty}_+ BU;\pi) \cong H^{*+2}(B^n BU;\pi)$

Careful argument with "Atiyah-Hirzebruch spectral sequence"

Theorem

If R is an even E_2 ring spectrum then every map of ring spectra $MU \rightarrow R$ lifts to a map of E_2 ring spectra.

Theorem

If R is an even E_3 ring spectrum, then $\mathcal{E}_2(MU, R) \simeq \mathcal{E}_2(BU, \Omega^{\infty} R^{\times})$ and $\pi_{-*}\mathcal{E}_2(BU, \Omega^{\infty} R^{\times}) \rightarrow R^*(BU(1))$ is surjective. Thus, every map of ring spectra $MU \rightarrow R$ lifts to a map of E_2 ring spectra.

What about for R just E_2 ?

 $H^*_{\mathcal{E}_2}(MU;\pi) \cong H^*_{\mathcal{E}_2}(\Sigma^{\infty}_+ BU;\pi) \cong H^{*+2}(B^n BU;\pi)$

 $= H^{*+2}(BSU; \pi) \twoheadrightarrow H^*(BU(1); \pi)$

Careful argument with "Atiyah-Hirzebruch spectral sequence"

Theorem

If R is an even E_2 ring spectrum then every map of ring spectra $MU \rightarrow R$ lifts to a map of E_2 ring spectra.

Theorem

If R is an even E_3 ring spectrum, then $\mathcal{E}_2(MU, R) \simeq \mathcal{E}_2(BU, \Omega^{\infty} R^{\times})$ and $\pi_{-*}\mathcal{E}_2(BU, \Omega^{\infty} R^{\times}) \rightarrow R^*(BU(1))$ is surjective. Thus, every map of ring spectra $MU \rightarrow R$ lifts to a map of E_2 ring spectra.

What about for R just E_2 ?

$$H^*_{\mathcal{E}_2}(MU;\pi) \cong H^*_{\mathcal{E}_2}(\Sigma^{\infty}_+ BU;\pi) \cong H^{*+2}(B^n BU;\pi)$$

 $= H^{*+2}(BSU;\pi) \twoheadrightarrow H^*(BU(1);\pi)$

Careful argument with "Atiyah-Hirzebruch spectral sequence"

Theorem

If R is an even E_2 ring spectrum then every map of ring spectra $MU \rightarrow R$ lifts to a map of E_2 ring spectra.

Theorem

If R is an even E_3 ring spectrum, then $\mathcal{E}_2(MU, R) \simeq \mathcal{E}_2(BU, \Omega^{\infty} R^{\times})$ and $\pi_{-*}\mathcal{E}_2(BU, \Omega^{\infty} R^{\times}) \rightarrow R^*(BU(1))$ is surjective. Thus, every map of ring spectra $MU \rightarrow R$ lifts to a map of E_2 ring spectra.

What about for R just E_2 ?

$$\begin{aligned} H^*_{\mathcal{E}_2}(MU;\pi) &\cong H^*_{\mathcal{E}_2}(\Sigma^{\infty}_+ BU;\pi) \cong H^{*+2}(B^n BU;\pi) \\ &= H^{*+2}(BSU;\pi) \twoheadrightarrow H^*(BU(1);\pi) \end{aligned}$$

Careful argument with "Atiyah-Hirzebruch spectral sequence"

Theorem

If R is an even E_2 ring spectrum then every map of ring spectra $MU \rightarrow R$ lifts to a map of E_2 ring spectra.

Theorem

If R is an even E_3 ring spectrum, then $\mathcal{E}_2(MU, R) \simeq \mathcal{E}_2(BU, \Omega^{\infty} R^{\times})$ and $\pi_{-*}\mathcal{E}_2(BU, \Omega^{\infty} R^{\times}) \rightarrow R^*(BU(1))$ is surjective. Thus, every map of ring spectra $MU \rightarrow R$ lifts to a map of E_2 ring spectra.

What about for R just E_2 ?

$$H^*_{\mathcal{E}_2}(MU;\pi) \cong H^*_{\mathcal{E}_2}(\Sigma^{\infty}_+ BU;\pi) \cong H^{*+2}(B^n BU;\pi)$$

 $= H^{*+2}(BSU; \pi) \twoheadrightarrow H^*(BU(1); \pi)$

Careful argument with "Atiyah-Hirzebruch spectral sequence"

Theorem

If R is an even E_2 ring spectrum then every map of ring spectra $MU \rightarrow R$ lifts to a map of E_2 ring spectra.

ψ