
Mike Mandell: En genera

The idea of this project is to try to understand: which cobordism invariants are realized as maps of structured ring
spectra? This is based on arXiv:1310.3336, and is all joint with Greg Chadwick.

Recall that a genus is a cobordism invariant. Generally, we want this to come as a map MG → R for G some
structure group – hopefully a map of ring spectra; the manifold invariants come after applying π∗. We’ll be most
interestd in MSO and MU (orientable and stably almost-complex manifolds, resp.). Recall that e.g. MU∗(X) is
the cobordism theory of stably almost-complex manifolds equipped with a map to some parametrizing space X.

Now, MSO and MU are commutative S-algebras, a/k/a “E∞-ring spectra”. So, a natural question is: Which
genera come from maps of commutative S-algebras? Or easier, how about just S-algebras, a/k/a “A∞-ring spectra”,
a/k/a E1-ring spectra? Intermediately, we also can ask about En for all n. This will be our focus.

Here is the main result.

Theorem 6. Let R be an E2-ring spectrum with no odd homotopy (i.e., it’s “even”). Then any map of (homotopy)
ring spectra MU → R lifts to a map of E2-ring spectra. If moreover 2−1 ∈ π0R, then any map of ring spectra
MSO → R lifts to a map of E2-ring spectra.

Corollary 2. The Quillen idempotent MU → MU is an E2 map, and taking telescopes yields that BP is also an
E2-ring spectrum.

This is independent of Basterra–Mandell, who show that BP is E4 but didn’t answer the question of the Quillen
idempotent.

Corollary 3. Given source and target ring spectra where the target is E2, any map of ring spectra can be lifted to
an E2 map.

This all runs through the Pontryagin–Thom theorem, which says that cobordism theories are represented by
Thom spectra, and that in this framework genera are precisely multiplicative orientations.

Definition 10. An R-orientation for Cn-vector bundles is an element of R2n(EU(n), ẼU(n)) that restricts to
a generator of R2n(Cn,Cn − 0) on every fiber of BU(n). Here, EU(n) is the universal Cn-vector bundle and
ẼU(n) is obtained by deleting the zero-section. An orientation is multiplicative if we actually get a unit element
of R2n(Cn,Cn − 0) ∼= R0(∗). By excision, an orientation is equivalently an element of R̃2n(TU(n)), for TU(n)
the Thom space of EU(n). We can actually define MU = colim Σ∞−2nTU(n), from which we get that [MU,R] ∼=
colim R̃2n(TU(n)).

Now, the Thom diagonal is a map MU → MU ∧ BU+, coming from maps TU(n) → TU(n) ∧ BU(n)+; this
gives an action R∗MU ⊗ R∗BU → R∗MU . For a fixed orientation (MU → R) ∈ R∗MU , this yields a map
R∗BU → R∗MU . This is precisely the Thom isomorphism.

Now, Mahowald proved that the Thom diagonal is actually a map of ring spectra, and Lewis proved that actually
this is even an E∞ map.

Hence, for σ : MU → R a multiplicative orientation, a map BU → R – i.e., a map Σ∞+ BU → R of spectra –
gives a ring map

MU →MU ∧BU+ → R ∧R→ R.

Now, maps of ring spectra Σ∞+ BU → R are the same as h-space maps BU → Ω∞R×, and these give ring maps
MU → R. We view this as R0BU → R0MU . We can state Quillen’s theorem in this light.

Theorem 7. Ring maps MU → R are exactly the elements of R0MU that correspond to elements of R̃2(TU(1))
that restrict to the unit element of R̃2(S2).

Now, assume that R is an En-ring spectrum, and suppose that σ : MU → R is En. We can play the same game,
and we get the same comparison: an equivalence between En maps Σ∞+ BU → R and En maps BU → Ω∞R×.
Moreover, Dunn proved that if R is En then R ∧ R → R is En−1...but we’re interested in En maps, so we just
bump up n by 1. That is, if R is En+1 then we have a natural action of mapEn(BU,Ω∞R×) on mapEn(MU,R).
Assuming the target is nonempty, choosing a basepoint yields a map mapEn(BU,Ω∞R×)→ mapEn(MU,R).

So, assume that R is En+1 and that σ : MU → R is En.
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Theorem 8. The Thom map induces a map

mapEn(BU,Ω∞R×) ' mapEn(Σ∞+ BU,R)→ mapEn(MU,R),

and this is a weak equivalence.

One might call this a multiplicative Thom isomorphism. Whereas one proves the usual Thom isomorphism cell
by cell, here it works slightly better to assume R is connective (which is fine since MU is too) and look at its
multiplicative Postnikov tower.

To describe these sorts of Postnikov towers, suppose R is a connective En-ring spectrum and let Z = π0R. Then
we get a Postnikov tower

R→ · · ·R〈2〉 → R〈1〉 → R〈0〉 = HZ

in the category of En-ring spectra. The key – due to Kriz – is that this is actually a tower of principal fibrations
of En-ring spectra, given by pullbacks

R〈j + 1〉 - HZ

R〈j〉
?

kj+1

- HZ ∨ Σj+2H(πj+1R)

?

in En-ring spectra (where the bottom-right is the square-zero ring spectrum, and is in fact E∞). This is basically
just a freed-up version of the spectrum version where we remove both instances of HZ.

Now, we define topological Quillen cohomology (relative to Z) by H∗En(A;M) = π0mapEn/HZ(A,HZ ∨Σ∗HM).

This gives rise to an obstruction theory: there’s an obstruction in Hj+2
En

(A;πj+1R) to lifting an En-ring map
A → R〈j〉 to an En-ring map A → R〈j + 1〉. (This comes from mapping A into the pullback square above.) The
space of lifts is either empty or is a “free orbit” on the topological monoid

mapEn/HZ(A,HZ ∨ Σj+1HM) ' ΩmapEn/HZ(A,HZ ∨ Σj+2HM) ' Ω2mapEn/HZ(A,HZ ∨ Σj+3HM) ' · · · .

This gives a sort of Atiyah–Hirzebruch spectral sequence: For En-ring spectra A and R (with A satisfying mild
hypotheses: maybe connective and also with a chosen map π0A→ Z), there is an “obstructed” spectral sequence

E2
p,q = Hp

En
(A;πqR)⇒ πq−pmapEn(A,R).

(This is “obstructed” in the sense that you can only pass to the next page when the obstructions vanish.)

Now, let’s say some stuff! Chadwick’s thesis handles the multiplicative Thom isomorphism in the case where
the target is E∞. This follows from what we’ve said, since the Thom map induces isomorphisms on E2-terms of
the obstructed spectral sequence, and hence an isomorphism of abutments.

Finally, we have the main result.

Theorem 9. If R is an even E3-ring spectrum, then mapE2
(MU,R) ' mapE2

(BU,Ω∞R×), and π−∗mapE2
(BU,Ω∞R×)→

R∗(BU(1)) is surjective. Thus, every map of ring spectra MU → R lifts to a map of E2-ring spectra.

For R only E2-we have to be more careful, but in fact the theorem still holds.
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Review of Genera

Definition
A genus is a cobordism invariant for manifolds with extra structure:

It assigns to every manifold (with extra structure) an element of an
abelian group A

Mm 7→ γ(M) ∈ A

such that when M is a boundary (with extra structure) γ(M) = 0.

Extra structure: (e.g.)

Oriented manifolds (MSO∗)
Stably almost complex manifolds (MU∗)
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Structured Genera

Genera are maps of ring spectra MSO → R, MU → R.

Question
Which genera come from maps of “highly structured” ring spectra?

MSO and MU are commutative S-algebras (E∞ ring spectra).

Which genera come from
Maps of commutative S-algebras = E∞ ring spectra
Maps of S-algebras = A∞ ring spectra = E1 ring spectra
Maps of En ring spectra ?
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Main Result

Theorem
Let R be an E2 ring spectrum with πnR = 0 for all n odd.

If there exits an E∞ ring map MU → R

Then any map of ring spectra MU → R lifts to a map of E2 ring spectra.

If 1
2 ∈ π0R, then any map of ring spectra MSO → R lifts to a map of

E2 ring spectra.
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The Thom Isomorphism

Thom diagonal
MU → MU ∧ BU+

Gives an action
R∗(MU)⊗ R∗(BU)→ R∗(MU)

f : MU → R
g : Σ∞+ BU → R

}
=⇒ MU → MU ∧ BU+

f∧g−−→ R ∧ R → R

Taking f to be a fixed orientation, get a map

R∗BU → R∗MU

Thom Isomorphism: This map is an isomorphism
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Multiplicative Structure

Thom diagonal
MU → MU ∧ BU+

is a map of ring spectra [Mahowald]

in fact E∞ ring spectra [Lewis]

MU ∧MU //

��

(MU ∧ BU+) ∧ (MU ∧ BU+)
∼= // MU ∧MU ∧ (BU × BU)+

��

MU // MU ∧ BU+
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Multiplicative Orientations

For a multiplicative orientation σ

Thom map

g : Σ∞+ BU → R =⇒ MU → MU ∧ BU+
σ∧g−−→ R ∧ R → R

takes

Ring spectra maps Σ∞+ BU → R
= H-space maps BU → Ω∞R×

}
in R0(BU)

to
Ring spectra maps MU → R in R0(MU)
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“Quillen’s Theorem”

For a multiplicative orientation, the Thom map takes
maps of H-spaces in [BU,Ω∞R×] = R0(BU)
to maps of ring spectra in [MU,R] = R0(MU)

Theorem (Hirzebruch, Dold, Quillen)

Maps of ring spectra in R0(MU) are in one-to-one correspondence
with elements of R̃2(TU(1)) that restrict to the unit element of R̃2(S2)

When a map of ring spectra MU → R exists, then:

The maps of ring spectra in R0(MU) are exactly the maps that
correspond to maps of H-spaces in R0(BU) and
Are in one-to-one correspondence with elements of R0(BU(1)) via
the map on R0 induced by BU(1)→ BU.

⇐=
Always holds
when R is even
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En genera

Assume that R is En

+1

and σ : MU → R is En

Thom map

g : Σ∞+ BU → R =⇒ MU → MU ∧ BU+
σ∧g−−→ R ∧ R → R

Fact:
Space of En ring maps Σ∞+ BU → R isomorphic to space of En
maps BU → Ω∞R× [May-Quinn-Ray-Tornehave]
If R is En then R ∧ R → R is En−1 [Dunn]

Observation
If R is En+1 and then we have a natural action of the space of En maps
En(BU,Ω∞R×) on the space of En ring maps En(MU,R).

If non empty, we get a map En(BU,Ω∞R×)→ En(MU,R).
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Multiplicative Thom Isomorphism

Assume that R is En+1 and σ : MU → R is En

Thom map

g : Σ∞+ BU → R =⇒ MU → MU ∧ BU+
σ∧g−−→ R ∧ R → R

induces a map En(BU,Ω∞R×) ' En(Σ∞+ BU,R)→ En(MU,R)

Theorem
This map is a weak equivalence.

Suffices to consider the case when R is connective
Look at Postnikov tower of R
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Postnikov Towers of En ring spectra

Let R be a connective En ring spectrum and let Z = π0R.

Form Postnikov tower by killing higher homotopy groups

R → · · · → R〈2〉 → R〈1〉 → R〈0〉 = HZ

in the category of En ring spectra.

Magic Fact (Kriz)

This is a tower of principal fibrations of En ring spectra

R〈j + 1〉 //

��

HZ

��

R〈j〉
kj+1

// HZ ∨ Σj+2Hπj+1R
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Topological Quillen Cohomology

R〈j + 1〉 //

��

HZ

��

R〈j〉
kj+1

// HZ ∨ Σj+2Hπj+1R

H∗En
(A; M) := π0En/HZ (A,HZ ∨ Σ∗HM)

Obstruction theory
Obstruction in H j+2(A;πj+1R) to
lifting an En ring map A→ R〈j〉 to an En ring map A→ R〈j + 1〉
The space of lifts is either empty or is a “free orbit” on the
grouplike topological monoid

En/HZ (A,HZ ∨ Σj+1Hπj+1R) ' ΩEn/HZ (A,HZ ∨ Σj+2Hπj+1R)

Atiyah-Hirzebruch Spectral Sequence
For En ring spectra A, R (with mild hypotheses on A), there is a natural
“obstructed” spectral sequence

E2
p,q = Hp

En
(A;πqR) =⇒ πq−pEn(A,R).
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Multiplicative Thom Isomorphism

Thom isomorphism: HZ ∧MU '−→ HZ ∧ BU+ as En HZ -algebras.

HZ ∧MU → HZ ∧MU ∧ BU+ → HZ ∧ HZ ∧ BU+ → HZ ∧ BU+

=⇒ H∗En
(Σ∞+ BU;−)

'−→ H∗En
(MU;−)

Consequence
For R an En+1 ring spectrum and σ : MU → R an En ring map, the
Thom map induces an isomorphism on E2-terms

Hp
En

(Σ∞+ BU;πqR)
∼=−→ Hp

En
(MU;πqR)

and an isomorphism
π∗En(Σ∞+ BU,R)

∼=−→ π∗En(MU,R)

Nothing special about BU/MU here; works for any En Thom spectrum.
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Computation

En(Σ∞+ BU,R) ' En(BU,Ω∞R×)

= En(BU, (Ω∞R×)1)

' U(BnBU,Bn(Ω∞R)1)

Compute using “Atiyah-Hirzebruch spectral sequence”

Hp(BnBU; Rq) = Hp(BnBU;πq+n(Bn(Ω∞R)1))

=⇒ πq+n−pU(BnBU,Bn(Ω∞R)1)

For n = 2,
H∗(B2BU) = H∗(BSU) = Z[c2, c3, . . .]

and
H∗(BSU)→ H∗(Σ2BU(1))

is surjective.
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Main Result

Theorem
If R is an even E3 ring spectrum, then E2(MU,R) ' E2(BU,Ω∞R×)
and π−∗E2(BU,Ω∞R×)→ R∗(BU(1)) is surjective. Thus, every map of
ring spectra MU → R lifts to a map of E2 ring spectra.

What about for R just E2?

H∗E2
(MU;π) ∼= H∗E2

(Σ∞+ BU;π) ∼= H∗+2(BnBU;π)

= H∗+2(BSU;π) // // H∗(BU(1);π)

Careful argument with “Atiyah-Hirzebruch spectral sequence”

Theorem
If R is an even E2 ring spectrum then every map of ring spectra
MU → R lifts to a map of E2 ring spectra.
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