
MOTIVES VERSUS NONCOMMUTATIVE MOTIVES

GONCALO TABUADA

We’ll start with motives, discuss a commutative problem, do a non-commutative
walk (through non-commutative motives), and come up with a partial solution to
that problem.

1. PureMotives

Let k be a base field and denote by SmProj(k) the category of smooth projective
k-schemes.

Chow(k)Q is the category of Chow motives. It’s the idempotent completion of the
category with objects (X, r) where X ∈ S mPro j(k), r ∈ Z, morphisms Hom((X, r), (Y, r′)) =

ZdimX−r+r′
rat (X × Y)Q where Z stands for algebraic cycles of fixed codimension. The

product is (X, r) ⊗ (Y, r′) = (X × Y, r + r′).

There’s a functor S mPro j(k)op → Chow(k)Q given by X → (X, 0) and a map
f : X → Y to the graph Γ( f ).

Let (C,⊗, 1) be a Q-linear additive rigid symmetric monoidal category. Define
⊗Nil(a, b) = { f ∈ HomC(a, b) | f ⊗n = 0, n >> 0} and N(a, b) = { f : a → b | ∀g :
b→ a, trace(g ◦ f ) = 0}.

Grothendieck already knew this. He wanted ⊗-nilpotent motives and numerical
motives, both of which can be built from the category Chow(k)Q by quotienting
out by the sets above (respectively) and taking idempotent completion of the result.
Call the first Voev(k)Q and call the second one Num(k)Q.

Janssen proved Num(k)Q is an abelian semi-simple category.

There is a functor S mPro j(k)op → Chow(k)Q → Voev(k)Q → Num(k)Q.

2. Non-Commutative PureMotives

A DG-category is one enriched in complexes of k-vector spaces. A dg k-algebra
A gives rise to a DG-category on one object. Any k-scheme X gives Per fdg(X), a
DG-category.

A dg-category A is called smooth if A ∈ Dc(Aop ⊗ A). It’s called proper if the
sum over all dim Hi(A(x, y)) is finite.
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Fact: X is a smooth and proper scheme iff Per fdg(X) is smooth and proper.

Let SmProp(k) be the category of smooth and proper dg categories.

We can form a category of non-commutative Chow motives NChow(k)Q as the
idempotent completion of a category whose objects are SmProp(k) and whose mor-
phisms Hom(A,B) is defined to be the Grothendieck group K0(Aop ⊗ B)Q. There
is again a monoidal product as in the commutative case.

There is a functor U:SmProp(k)→NChow(k)Q which is the identity on objects and
takes a mapA → B to [FB].

As before we can define noncommutative nilpotent motives NVoev(k)Q and non-
commutative numerical motives by quotienting by the same sets as before and tak-
ing idempotent completion.

Theorem 2.1. Chow(k) = 0 implies NNum(k)Q is abelian and semi-simple.

There is a chain of functors SmProp(k)→NChow(k)Q →NVoev(k)Q →NNum(k)Q

3. Orbit categories

Let (C,⊗, 1) be a Q-linear additive symmetric monoidal category. Suppose O is a
⊗-invertible object of C. So − ⊗ O is an automorphism.

The orbit category isC/−⊗Owith objects ofC and Hom(a, b) =
⊕

n∈ZHomC(a, b⊗
O⊗n)

There is a functor π : C → C/ − ⊗O and the natural isomorphism π ◦ (− ⊗ O)⇒ π
is 2-universal.

Example: M(P1) is the Chow motive of the projective line. It decomposes into
M(S pec(k))⊕(S pec(k),−1), where the second piece is the Lefschetz motive. There
is also the Tate motiveQ(1) and we are interested in the orbit category Chow(k)Q/−
⊗Q(1).

4. Bridges

We have seen that from SmProj(k)op one can get all the way to Num(k)⊗/−⊗Q(1).
In fact you can do this in several ways e.g. passing to the orbit category at any of
the levels in the chain of functors we finished Section 1 with.

We can similarly pass from SmProp(k) to NNum(k)Q on the non-commutative
side.

There is a map X → Per fdgX from SmProj to SmProp.

Theorem: There are Q-linear fully faithful ⊗-functors R,Rnil,RN which go from
commutative to non-commutative at each level, e.g. R : Chow(k)Q/ − ⊗Q(1) →



MOTIVES VERSUS NONCOMMUTATIVE MOTIVES 3

NChow(k)Q and the others are similarly going from the orbit category on the com-
mutative side to the corresponding category on the non-commutative side. These
functors make the corresponding diagram of categories commute:

S mPro j(k)op //

��

S mProp(k)

��
Chow(k)Q/ − ⊗Q(1) //

��

NChow(k)Q

��
Voev(k)Q/ − ⊗Q(1) //

��

NVoev(k)Q

��
Num(k)Q/ − ⊗Q(1) // NNum(k)Q

The following is joint with Morcolli.

Theorem 4.1. Suppose Perf(X) is 〈ε1, . . . , εn〉 where εi are objects satisfying the
property that they generate all objects in Perf(X) and that hom’s between εi and ε j
are k if i = j and 0 otherwise.

Then M(X)Q ' L⊗`1 ⊕ · · · ⊕ L⊗`n where `1, . . . , `n ∈ {0, . . . , dim(X)}.

The proof is just the commutative diagram above. It connects something geometric
with something categorical.

5. Problem 2: Voevodsky’s Nilpotence Conjecture

This conjecture was made in 1995: Let X be a smooth projective scheme. Then
Z∗nil(X)Q = Z∗num(X)Q, i.e. cycles up to nilpotent rational equivalence are the same
as cycles up to numerical rational equivalence.

This conjecture would imply one of Grothendieck’s standard conjectures.

It’s known for curves, surfaces, and abelian 3-folds (char(k) = 0).

We can extend this conjecture to be a statement aboutA ∈ S mProp(k) rather than
about X ∈ S mPro j(k). First, notation: K0(A)Q/ ∼ ⊗nil = HomNVoev(k)Q(U(k),U(A)
and K0(A)Q/ ∼ num = HomNNum(k)Q(U(k),U(A).

Voevodsky’s non-commutative conjecture then says K0(A)Q/ ∼ ⊗nil = K0(A)Q/ ∼
num.

Theorem: Voevodsky’s conjecture is true iff the non-commutative version is true.
There are also examples where it’s known. This is joint with Bernardara.

Examples:

(1) Quadric fibrations Q → s of relative dimension n (at least, when n is even
and dim(s)≤ 2).
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(2) Intersections of quadrics

(3) Linear sections of grassmannians

(4) Moishezon manifolds

6. Problem 3: Panajape’s Conjecture

Let X ⊂ Pn be a complete intersection of multi-degree (d1, . . . , dr) and let α =

[m −
∑

i>1 di/d1]

Conjecture PS(X): When i < α the Chow ring is quite simple. In particular,
Zrati(X)Q = Q.

There are some partial results on this classically, by Esnault, Levine, Viehweg.

Attacking this problem non-commutative requires non-commutative Jacobians. So
we’ll work over k = C and char(X) = d. Consider non-commutative deRham
cohomology.

NH2i+1
dR (X) = ΣC,M(C)→M(X)⊗Q(i)Im(H1

dR(C)→ H2i+1
dR (X))

The classical intersection pairing 〈−,−〉 restricts to give NH2d−2i−1
dR (X)×NH2i+1

dR (X)→
C.

Theorem with Marcolli: There is aQ-linear additive Jacobian functor J(−) : NChow(k)Q →
Ab(k)Q.

Furthermore, if the pairing is non-degenerate then J(Per fdg(X)) '
∏d−1

i=0 Jn
i (X).

Corollary 6.1. With no condition on the pairing, if X is a curve C then J(Per fdg(C)) '
J(C), and if X is a surface S then J(Per fdg(S )) ' Pic0(S ) × Ab(S ).

For a quadric fibration Q→ P2, J(Per fdg(P2,C0) splits as a product of Ja
i (Q).

Theorem (with Bernardara): The conjecture PS(X) holds when X is a complete
intersection of two quadrics or of three odd dimensional quadrics.

This improves on the proof of Esnault, Levine, Viehweg by getting it to work in
ambient spaces of arbitrary dimension (rather than just low dimension). However,
this result only applies to a restricted class of X.
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