
A K(Z,4) IN NATURE

ANDRE HENRIQUES

Abstract. Topological spaces and simplicial sets have associated homotopy types
(that is, the 1-category of topological spaces maps to the infinity-category of
spaces, and so does the 1-category of simplicial sets), but these are not the only
kind of mathematical objects that have associated homotopy types. In this talk,
I will present a mathematical object (not a topological space) that comes from
the theory of von Neumann algebras, and whose associated homotopy type is
K(Z,4).

This was a chalk talk. The scanned lecture notes can be found at the end.

Joint with A. Bartels, C. Douglas.

1. K(Z,0)-K(Z,3)

K(Z, 0) = Z, K(Z, 1) = S 1 or Cx

K(Z, 2) = CP∞ the set of all lines in C∞. We’d like this better if we keep the
description as ‘set of all lines’ but throw away the reliance on C∞. So we consider
the stack of all lines. It does have a homotopy type and it’s a K(Z, 2).

This stack of all lines is the classifying stack of S 1 (if you equip your lines with a
metric; otherwise it’s B(Cx)).

We can do the same trick to get to K(Z, 3) if you have a group which is a K(Z, 2).
We’ll start with an infinite dimensional Hilbert space H and take the unitary group
U(H). A theorem of Kuiper says U(H) is contractible. Also, multiples of the
unit gives a subgroup of U(H) which is an S 1. When we take the quotient we get
PU(H) = U(H)/S 1 and this is a K(Z, 2). Taking classifying stack BPU(H) yields
a K(Z, 3).

Aside: The correct topology on U(H) is the one that makes U(H) into a Polish
group, i.e. completely metrizable and separable. With this topology, all the topolo-
gies on H become equal upon passage to U(H). Furthermore, Kuiper’s Theorem
is easy to prove. Just take any u ∈ U(L2[0, 1]) and define ut : 1 7→ u so that we
obtain a splitting L2[0, t] ⊕ L2[t, 1] where u acts on the first part and 1 on the sec-
ond. Let t go to 0 and this provides a continuous homotopy where the first part is
contracted.
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Note that because PU(H) is defined as a quotient group, it’s not clear how to make
it act on something. Thankfully,

Theorem 1.1. PU(H) = Aut(b(H)) where b is for ‘bounded operators’ and Aut
means automorphisms respecting the C∗-structure.

Proof. The action of PU(H) on b(H) is by conjugation.

To see that it is in fact the full automorphism group, first prove that every au-
tomorphism of b(H) is inner, using the analytic Morita equivalence b(H) 'M C
(algebraically, C is only Morita equivalent to b(V) for finite dimensional V). Given
an automorphism α, consider the (b(H),C)-bimodule H. One could also twist the
b(H) action by α and there’s a unitary isomorphism U between these two. Thus,
α = ad(U).

Having proven surjectivity, we must now prove ker(ad : U(H) → Autb(H)) =
S 1. This kernel is the center Z(U(H)). Next, Z(b(H)) = End(b(H)b(H)b(H)) =
End(CCC) where this notation means view C as a (C,C)-bimodule. �

So now BPU(H) can be seen to be the moduli stack of algebras that look like
b(H), i.e. are isomorphic to b(H) as algebras. These algebras are called ‘type I
factors,’ i.e. infinite dimensional von Neumann algebras that are factors (the center
is 1-dimensional) and the set of projections admits minimal elements. We’ve now
eliminated the choice of H in the description of K(Z, 3).

You could replace C by R and nothing would change till the last paragraph, which
would now have two isomorphism factors (one for matrices over R and one for
matrices over the quaternions). So this would have a Z/2 in π0.

1.1. Connections to twisted K-theory. Suppose X is a space and there’s a map
from X to the stack of type I factors. This is equivalent to the data of a bundle
over X whose fibers are of the type of b(H). So you get a bundle of algebras over
X.

K-theory is defined via bundles of vector spaces over X. The bundles above natu-
rally define twisted K-theory.

2. A choice-free K(Z, 4)

Suppose E is a spectrum. Then E admits twistings by spherical fibrations. Given a
spherical fibration, can apply − ∧ E fiberwise and you get sections of that bundle
of spectra. This is the twisted E-cohomology.

Now take E = tm f . Then there’s a map BO → BGL1tm f . You can precom-
pose with BS tring → BO and the resulting map BS tring → BGL1tm f is null-
homotopic. Thus, there’s an extension to the cofiber BO/BS tring → BGL1tm f .
This cofiber has homotopy groups Z,Z/2,Z/2, 0,Z in degrees 0,1,2,3,4. So there’s
a map K(Z, 4)→ BO/BS tring.
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In the background just now were type III factors (we will not say anything about
type II factors). There’s also a subtype called type III1 factors. Let R be a hyperfi-
nite type III1 factor. Just like H, it turns out R is uniquely defined by this property,
up to isomorphism. How do we construct R?

Consider QxnL∞(R) acting on L2(Qx×R) via ((q, f ) · ζ)(x, y) = f (y)ζ(qx, qy). The
closure is R.

Properties of R:

(1) Z(R) = C, so R is a factor.

(2) U(R) ' {∗}.

(3) Aut(R) ' {∗}, but this is non-trivial.

We can now make a construction 0 → ZU(R) → U(R) → PU(R) → 0 where
ZU(R) = S 1.

Similarly, 0→ Inn(R)→ Aut(R)→ Out(R)→ 0.

Inner automorphisms are exactly the same as unitaries modulo those unitaries that
act trivially (i.e. those from the center) so Inn(R) = PU(R). Because Aut(R)
is contractible, this makes Out(R) a K(Z, 3). Taking B of it yields a K(Z, 4) =
BOut(R).

All the groups in the two exact sequences above are Polish groups, but Out(R) is
not a topological group because the map Inn(R) → Aut(R) is the inclusion of a
dense subset.

Out(R) is still a sheaf of groups on Top. And BOut(R) is Bim(R)x/iso, i.e. invert-
ible (R,R)-bimodules mod isomorphism.

Theorem 2.1. Out(R) is the group of automorphisms of Bim(R), the monoidal cat-
egory of (R,R)-bimodules. Again, these are automorphisms as a sheaf of spaces
rather than as a group.

The action of Aut(R) on Bim(R) is given by α · M = (αMα), where α twists on
both sides. We next need a trivialization of the action of Inn(R). That will induce
a trivialization of the action of U(R) and we must be certain that this induces a
trivialization of the action of ZU(R). So we take our formula for α · M and we put
α = ad(U) for U ∈ U(R). So we need a trivialization M � (ad(U)Mad(U)). It turns
out that the map U ·(−)·U−1 does the job. On ZU(R) this is the identity, as required,
because UU−1 = 1.

We can now show a piece of the proof of the theorem, namely the part analogous to
our proof of surjectivity in Theorem 1.1. This uses that Bim(R) is Morita equivalent
to Bim(C). This Morita equivalence is given by Bim(R)R−ModBim(C. Then you may
formally copy the argument from Theorem 1.1. Given α in Aut(Bim(R)), use α
to twist R-Mod (viewed as a (Bim(R),Bim(C))-bimodule) into R-Mod (viewed as
a (Bim(R),α,Bim(C))-bimodule). The untwisting can be done in C and we get
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an equivalence M (equivariant with respect to the untwisting action) between the
untwisted R-Mod and the twisted R-Mod. We then see that α = ad(M), proving
surjectivity.

We finish by looking at BOut(R). This is the moduli stack of things that look like
Bim(R). Hopefully this description will help in the project of finding geometric
co-cycles for tmf. There should be a notion of bundle with an action of the bundle
of categories.
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