


GEOMETROSTATICS: THE GEOMETRY OF STATIC
SPACETIMES IN GENERAL RELATIVITY
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Static spacetimes, i.e. ones that don’t move.
Examples:

(1) Minkowski (special relativity) η = −dt2 + δ where δ is Euclidean.
(2) Schwarzschild - outside of static, spherically symmetric ball.

ds2 = −N2c2dt2 + g

on R×(R3\0), lapse N , where g = (1+M/2r)4δ and N = (1−M/2r)/(1+
M/2r). (fig 1)

(3) Weyl class (axisymmetric)
(4) Andersson-Schmidt, ’09, 2-body configuration. (fig 2) Proof by implicit

function theorem. (not known if stable...) Infinitely many such based on
matter types and such.

How could we talk about mass of each piece? center of mass of each piece? If
we look at geodesics in such, how do they behave? Newtonian limits? Can we
learn anything from Newtonian gravity? What can we learn as r →∞?

Take (L4, ds2) Lorentzian. Is ”static” if exists a killing vector field X, timelike,
hypersurface-orthogonality. (This is sometimes called static and stationary.) If

it exists, we call it X = ∂t. N :=
√
−ds2(X,X) is the lapse. (fig 3) g is induced

metric. We assume ds2 = −N2c2dt2 + g.
Such a system is isolated if N → 1 as r → ∞ and gij → δij as r → ∞ and

vacuum Einstein equations are satisfied outside some compact set.
All of this together is geometrostatic. All the examples earlier are.
Take vacuum Einstein, which is Ric = 0, leads to static vacuum equations,

which is R = 0 and N · Ric = ∇2N on a slice. These are equivalent to ∆N = 0
and NRic = ∇2N .

Geometrostatic are automatically Schwarzschildean, (Kennejich, O’Murchadha).
and gij ≈ Schwarzschildij + 2M~z · ~x/r3δij +O(1/r3) where z is unique vector in
R3 in wave harmonic coords (i.e. such that �xi = 0). Also,

N = N(schwarzschild)−Mzx/r3 +O(1/r3).

(M 6= 0). These are ADM mass and center of mass (M and z), M = mADMG/c
2,

z = zADM = zCMC .
(Note: Might not expect wave harmonic coords exist everywhere in exterior

regions, but get �xi = 0 iff ∆γx
i = 0. Also γ = δ + O(1/r2). And then things

behave well under Euclidean motions.)
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But these are only mass of whole configuration, not for piece. These more
local masses we call quasi-local mass and center of mass. Do change of variables.
U = c2 lnN and γ = N2g. Can translate asymptotic results to these. U =
−mG/r−mGz · x/r3 +O(1/r3). (Pseudo-Newtonian potential) Can get Ricγ =
2/c4dU ⊗ dU and ∆γU = 0. Somewhat similar to Newtonian.

In Newtonian case,

mN =

∫
R3

ρdV =
1

4πG

∫
Ω

∆V dV

=
1

4πG

∫
Σ

v(U)dσ

(fig 4)

~zN =
1

m

∫
ρ~xdv =

1

4πGm
=

∫
Σ

(v(U)x− Uv(x))dσ

Define (PN is pseudoNewtonian)

mPN :=
1

4πG

∫
Σ

v(U)dσ,

with respect to γ and

~zPN =
1

4πGm

∫
Σ

(v(U)x− Uv(x))dσ.

Thanks to Laplace equation for U , this is well defined for any surface Σ containing
the matter. For any large enough, mPN(Σ∞) = mADM and similar for center of
mass. It’s nonnegative under strong energy condition.

But now, we can take Σ only containing one piece of the matter. If we have two
bodies, we get the PN masses add to the total mass! M1z1 +M2z2 = Mtotztot. No
potential energy or kinetic energy in some sense. If we take the Newtonian limit
in some sense, these converge to the Newtonian masses and center of masses.


