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Joint work with S. Tahvildar-Zadeh.
A question from her postdoc years: Is there a way to control the solutions of

inverse scattering mechanism (ISM) in GR?
Her goes is to explore interconnections between gravitation (Einstein vacuum

equations (EVE) and electromagnetism (EM)), Integrable PDE and Harmonic
maps.

Our goal in this talk is to understand Figure 1. Theorem 1 is an integrability
problem, Theorem 2 is “dressing” the solution. Our plan is:

(1) Classical Integrability/ISM
(2) ISM for EVE
(3) Harmonic Maps
(4) Results!
(5) Main elements of P
(6) Example
(7) Control Elements - Future Work

1. A simple beginning: Linear evolution problems, like ut = cux = 0. For
this problem, u(t, x) = f(x − ct), a solution, is a traveling wave form. Or for
utt + ∆u = 0, we have solutions like u(t, x) ≈ ei(k·~x+|k|t), which is a planar
wave. Certain non-linear PDEs still have this wave form of solutions. We have
the superposition principle of traveling/plane wave solutions (in linear evolution
problems). On the other hand, nonlinear equations don’t generally posses this
feature.

Kurskal - Zubusky ’65: KdV problem has “hidden” wave solutions. This
prompted study of integrable PDE. For nonlinear equations, wave solutions are
solitons, i.e. idealized solutions that act like waves.

Definition 0.1. Idea of integrable: A PDE or system of PDE is said to be
integrable if 1. You can “integrate it” (explicit solutions) a la Liouville. 2. an
infinite family of conservation laws. 3. a Lax pair exists. 4. ISM applies. (one of
these) We will use 3.

We will use the equation ut = F (u, ux, uxx, · · · ). Associate to it a corresponding
overdetermined linear scattering system for an isospectral family L(t, u) whose
eigenfunctions ψ satisfy a secondary equation, ∂tψ = Bψ (fig 2). Isospectral then
implies compatibility condition Lt = [B,L]. We then say L,B is a Lax pair.
(defined in ’68 by Lax)
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For Example: KdV equation is ut+6uux+uxxx, L = −∂2
x+u, B some function

of u, ux, uxx. Not clear how to find, but can find sometimes.
If I can find this pair, there is a process I can use to evolve the equations. This

transforms nonlinear evolution to linear existence!
Why would we do this perverse process? There are many equations for which

this all applies and works out.
How does this apply for EVE?
2. ISM/Integrability for EVE.
Belinski-Zakharov in ’78/’79 - got integrability for static, axisymmetric EVE.

They assumed existence of 2 commuting Killing fields. The metric can then be
rewritten as

gµνdx
µdxν = f(ρ, z)(dρ2 ± dz2) + g̃abdx

adxb

Also, EVE can be reexpressed as some system in g̃ + some equations for f which
can be solved explicitly by “quadrature” if g̃ is given. Then reexpress this system
in g̃ as our PDE of interest. This is actually an integrable system. To do this
you have to generalize idea of derivatives.

They write the overdetermined linear system as D1ψ = Uψ, D2ψ = V ψ where
U, V are matrices, D1, D2 are matrix operators. Where Dj = ∂j − p(ρ, z, λ)∂λ.
(derivative in spectral component) We can then start this mechanism to find
solutions.

3. Harmonic: On the other hands, the 2 Killing field reduction of the EVE
gives the Ernst equation for a complex potential ε(ρ, z)

(ε+ ε̄)∆ε+ 2∇ε · ∇ε = 0

but this is a harmonic map equation!

Definition 0.2. f : (M, g) → (N, h) is harmonic, if it is a critical point of the
Dirichlet energy,

∫
D

1
2
trgf

∗h. If M is 1 dimensional, this is really just geodesics.
If 2 d, generalizes harmonic.

Ex: If we look at f : R3 → SL(2,R)/SO(2) ' HR, and the metric on R3 is
ds2 = dz2 + dρ2 + ρdφ2 then get harmonic map function. Metric on the upper
half is ds2 = (Re ε)−2|dε|2. We then recover the Ernst Equation.

4. Results
Main Point: EVE + 2 Killing fields are integrable because (certain) harmonic

maps are integrable.

Theorem 0.3 (Theorem 1). Let G be a real semisimple Lie group and K a
maximal compact subgroup. Then any axially symmetric harmonic map from
R3 → G/K is integrable. (i.e. harmonic map is compatibility condition for a
findable Lax pair).

Theorem 0.4 (Theorem 2). If G/K can be realized in terms of its involutions
as conjugations by a common element, then solutions can be dressed. (I.e. in Fig
1, you can find your X which makes it work... she said more but hard to write.)
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5. Elements of proof(s).

(1) Identify your field equations of interest with those of a harmonic map.
(see fig 3)

(2) Rewrite harmonic map equations as a nonlinear Hodge system. Metric on
G/K comes from maurer? - Cartan form on N , w = −dgg−1 pull back
to on on M , W = −dqq−1. the pullback of the structure equations give
something like dW + W ∧W = 0, d(ρ ? W ) = 0 (comes from harmonic
map equations, and this is the Hodge star.)

(3) Exhibit a Lax pair whose compatibility condition is the Hodge system.
The trick is rewriting the above equation as dq = −Wq and then general-
ize this to DΨ = ΛΨ by embedding spectral parameter in D, etc. There
are some nice geometric methods for all this. This completes theorem 1.

(4) Construct dressing matrix X possessing appropriate symmetries. (Want
to ensure q in Fig 1 is still harmonic map into same symmetric space.)
Involves Greality and involutive symmetries.

(5) X = I +
∑2N

k=1
Rk

λ−λk
Reduces problem to finding solutions to a linear

algebraic system on Rk. That completes the vesture (dressing) problem.

Example: Dressing with a simple pole can leave you naked!

H = SL(p+ q,C)

G = SU(p, q)

K = S(U(p)× U(q))

Map from H → G is τ(g) = Γg−?Γ, map from G → K is σ(g) = ΓgΓ. Complex
Grassmannian , G/K = {q ∈ G|qΓqΓ = I}. We have p = 1, q = 1→ HR is EVE,
and p = 1, q = 2 → HC is EM. Here Γ is block diagonal matrix with Ip×p and
−Iq×q.

Choose q0(~x) = I4×4 : R2
+ → SU(2, 2)/S(U(2)×U(2)) (Minkowski seed). This

implies Ψ0(~x, λ) = I4×4. Dress q0 with one pole by fixing ω = is, s > 0. This
implies

X(~x, λ) = I +
R1

λ− λ̄1

+
R2

λ− λ̄2

where λi are roots of λ2 − 2(z − ω)λ− s2. Linear algebra rewrite:[
|α|2−|δ|2
λ1−λ̄1

|α|2+|δ|2
λ1−λ̄2

|α|2+|δ|2
λ2−λ̄1

|α|2−|δ|2
λ2−λ̄2

][
u∗1
u∗2

]
=

[
−v∗1
−v∗2

]
New solution q(~x) = X(~x, λ = 0. q0(~x) = I4×4 = 1

λ1
u1v

∗
1 − 1

λ2
u2v

∗
2. Change

Weyl coord ~x = (ρ, z) to Boyer-Lindquist r, θ.

q =

[
1 + 8|α|2|δ|2a2s2

F
1
F
{−4sαδ̄(iA(r −m) +Bs cos(θ))}

−1
F
{·} 1 + 8|α|2|δ|2a2s2

F

]
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For A = |α|2 − |δ|2 = s, B = |α|2 + δ|2 = a :=
√
m2 + s2, αδ̄ = m/2. q recovers

the (naked) Kerr solution!


