Lighting up Supermassive Binary Black Holes: Probing the Dynamical Spacetimes of Mergers

Tanja Bode Universität Tübingen

Collaborators: T. Bogdanović, R. Haas, J. Healy, P. Laguna, D. Shoemaker

4. September 2013 Connections for Women: Mathematical General Relativity Mathematical Sciences Research Institute

EM Signatures Through BBH Lifetime

See Schnittman *(arXiv:1307.3542)* for a good review

Multi-Messenger Astronomy

Credit: NASA, ESA, the Hubble Heritage (STScI/AURA)-ESA/Hubble Collaboration, and K. Noll (STScI)

Credit: LIGO Laboratory

Synergistic Measurements → Extra Information → "Standard Sirens"

- Source Localization: EM better than GW
- Indep. Redshift & Luminosity distances
- Galactic Evolution & Nuclei Environments
- Supermassive BH growth methods

See e.g., Schutz ('86). Holz & Hughes (2005)

EM + GW Detections Sight & Sound

Credit: NASA, ESA, the Hubble Heritage (STScI/AURA)-ESA/Hubble Collaboration, and K. Noll (STScI)

Supermassive Black Holes

- 10^{6} - 10^{7} M_{sun} \rightarrow edge of eLISA/NGO (2028) frequency band
- Fiducial $q = m_1/m_2 \le 2$ binaries, whose vacuum solutions are thoroughly studied

Galactic Nuclei

Gap in evolutionary studies of SMBH systems ($10^{-2} - 10^{-5}$ pc) \rightarrow uncertainties in environment

Inefficient Cooling \rightarrow ADAFs (Advection Dominated Accretion Flows) / RIAFs

NASA/CXC/MIT/Frederick K. Baganoff et al.

Like Sgr A^{*}, observations point to SBH environments where accretion is suppressed below its expected rate for the surrounding

material.

Efficient Cooling \rightarrow **Circumbinary Disk**

Suggested configuration from Newtonian, N-Body, and SPH simulations. Binary torques evacuate the central region.

MacFadyen and Miloasavljević, ApJ 672, 83 (2008)

Galactic Nuclei

Since 2009, just over a dozen studies have started exploring these parameters in full GR Solve matter evolution when it's fully coupled to a proper, fully dynamic spacetime..

Fully-Coupled Numerical Relativistic Hydro Simulations

 \rightarrow Dynamic coupled spacetime, though gas too tenuous to affect binary on these timescales.

$$
G_{\alpha\beta} = 8\pi T_{\alpha\beta} \qquad \nabla_{\alpha} T^{\alpha\beta} = 0
$$

$$
\nabla_{\alpha} (\rho u^{\alpha}) = 0
$$

\rightarrow Physics Assumptions

- Perfect fluid and/or Maxwell stress energy tensor
- Ideal Gas Equation of State $P(\rho, \epsilon) = \rho \epsilon (\Gamma 1)$, or Polytrope (MHD)

- Heating of the gas via radiative feedback from the central AGN or cooling due to radiation during the simulated time range around merger is negligible

Luminosity from Hydro/MHD Fields

Extrapolating from an evolved ideal gas distribution to observable light curves and spectra.

- First Generation
	- Emissivity of a region, ε (ρ , T,B)
	- Luminosity is $\int \epsilon(\rho, T, B) dV$
	- Optically thin hot accretion flow & regions outside CB disk

- Second Generation
	- Ray tracing to capture e.g. photon orbits, redshifts
	- **Radiation Transport** \bullet

Luminosity from Hydro/MHD Fields

Relativistic Thermal Free-Free Emission (a.k.a. Bremsstrahlung) \bullet

$$
\varepsilon_{\text{brem}} = 2.8 \times 10^4 \text{erg s}^{-1} \text{ cm}^{-3} \left(\frac{\rho}{10^{-11} \text{g cm}^{-3}} \right)^2 \left(\frac{T_e}{10^{10} \text{ K}} \right)^{1/2} \{1 + 4.4 \times \left(\frac{T_e}{10^{10} \text{ K}} \right) \}
$$

$$
L_{\text{brem}} \approx 4 \times 10^{44} \text{ erg s}^{-1} \left(\frac{\rho}{10^{-11} \text{g cm}^{-3}} \right)^2 \left(\frac{R}{10M} \right)^3 M_7^3 \left(\frac{T_e}{10^{10} \text{ K}} \right)^{1/2} \left[1 + 4.4 \times \left(\frac{T_e}{10^{10} \text{ K}} \right) \right]_{5.4}
$$

Synchrotron \bullet

$$
L_{\text{synchro}} \approx 8 \times 10^{36} \text{ erg s}^{-1} \left(\frac{\rho}{10^{-11} \text{g cm}^{-3}} \right) \left(\frac{R}{10M} \right)^3 \left(\frac{B}{1G} \right)^2 M_7^3
$$

Inverse Compton \bullet

$$
L_{\rm IC} \approx 3 \times 10^{-8} L_{\rm soft} \left(\frac{\rho}{10^{-11} \, \text{g} \, \text{cm}^{-3}} \right) \left(\frac{R}{10M} \right)^3 \left(\frac{R_{\rm tran}}{10^5 M} \right)^{-2} M_7
$$

Hot Accretion Flows

Hot Accretion Flows

- **Astronomical basis RIAFs**
	- \rightarrow Low-luminosity AGN (e.g., Elitzur and Ho 2009)
	- \rightarrow Sgr A* (e.g., Narayan *et al.* 1995, 1998)
- 2 Temperature ($T_e \propto T_p$) Ideal Gas $t_{\text{Coulomb}} \gtrsim t_{\text{inflow}}$

 M_{gas} up to $\sim 1\%$ M_{BH} at decoupling (Colpi *et al.* 2007)

Environment parameters \bullet

> Density, Temperature, & Equation of State **BBH** parameters

Hot Accretion Flows: Basic Features

Interbinary Bar

Gas falls into interbinary region, creating a dense, hot har.

Density Wakes

Moving BHs shock the gas as they move through and accrete the surrounding gas, creating trailing wakes wrapped around the BHs by their spin.

Emissivity,

(*Bode* et al '10, '12 Farris et al '10)

Hot Accretion Flows: Temperature dependence

(Bode et al 2012)

Temperature affects the pressure and hence support against both shocking (density wakes) and infall to the interbinary bar.

Lower temperature flows (\sim 10^{10} K) accumulate more matter, while remaining in the approximate RIAF regime.

Pre-merger Flare & Post-merger Drop-off Cooler Gas \rightarrow Higher peak (emissivity \sim density²)

Hot Accretion Flows: Pre-merger Luminosity Oscillations

Relativistic beaming accentuates geometry of inner region for some aspect angles Equal-mass binary \rightarrow Smooth, regular oscillations (\sim few %)

Hot Accretion Flows: Pre-merger Luminosity Oscillations

Unequal-mass Binary breaks π – symmetry

 $q=m_1/m_1 = V_2 \rightarrow Double-peaked oscillations$

(Bode et al. '12)

Hot Accretion Flows: Pre-merger Oscillations

Both boosted L and GWs connected to orbital frequency. **Correlated Counterpart! (Though challenging to observe)**

Hot Accretion Flow Simulation Samples

Examples: Equal-mass, varying spin

Qualitative Features \rightarrow Interbinary bars \rightarrow Density wakes

Hot Accretion Flows: Black Hole Parameter Dependence

Pre-merger *Flare &* Post-merger *Drop-off*

At high T, flare not strongly influenced by binary parameters

Observability

Artist's Conception of IXO, Credit: NASA

For an AGN with RIAF at z~1, $L_{X-ray} \simeq L_{bol}/15.8$, $F_{X-ray} \sim 10^{-15} \text{erg cm}^{-2} \text{ s}^{-1}$ Pre-merger flares visible by planned International X-ray Observatory (IXO) & Energetic X-ray Imaging Survey Telescope (EXIST)

- High-luminosity obscured AGN out to $z\sim2.5$
- Low-luminosity AGN (LLAGN) out to $z \sim 0.5$

Circumbinary Disk

Circumbinary Disk

With enough viscosity, disk can decouple much closer to merger and follow the binary inwards as it heads to merger

- GW shedding of orbital eccentricity \bullet dominates for $a \le 120$ M, so quasi-circular orbits
- Inner edge at $r \sim$ semi-major axis \bullet
- **Environmental Parameters** \bullet
	- Thickness (H/R), Inner Edge, Equation of State **BBH** Parameters
- Emission from disk vs gap compete \bullet

Circumbinary Disk in HD

Thick(-ish) Disks (H/R = 0.11, 0.2, 0.4)

Qualitative Features

- \rightarrow Shock-heated tenuous inner region
- \rightarrow No interbinary bar this time
- \rightarrow Accretion-based emission decreases with time as gas depletes
- \rightarrow Thick disk too hot, washes out perturbations to the disk
- \rightarrow Interaction w/ Inner Edge particularly with unequal masses close to merger

Farris et al '11, Bode et al. '12

Circumbinary Disk: Inner Gap Luminosities

(Bode et al '12)

Circumbinary Disk: Unequal Mass Binary Accretion Signature

Accretion rate switch for unequal mass ratio \rightarrow Spectrum transient to lower energies

Observability: Challenging, must be visible above surrounding disk luminosity and variability. Requires specific aspect angle for signature to escape.

Magnetic Fields

Vacuum EM / Force-Free

EM fields in vacuum (threaded from distant circumbinary disk) and force-free magnetically dominated plasmas $(10^4 M_{\rm g} G)$

Poynting flux collimated outwards at BH poles, regardless of BH spin (Mösta+ '10, '11, Palenzuela+ '09, '10, $Alice+ '12)$

Degrees of Magnetic Influence

- Ideal MHD Infinite \bullet conductivity limit
	- Magnetic fields increase pressure support
- Force-free Magnetically \bullet dominated regime
	- Amplified magnetic field, amplified synchrotron radiation

(Giacomazzo '12)

Magnetized Circumbinary Disks

GRMHD, MRI-based magnetized circumbinary disks

 \rightarrow Poynting flux collimates outwards at BH poles. $(Farris + '12)$

Magnetized Circumbinary Disks

Magnetized Disks – Post-merger Poynting Flux flare-up due to outflows, noteworthy if cooling present (Farris et al 2012)

Summary

- **Hot Accretion Flows**: *hot, tenuous gaseous environment (e.g. Sgr A*)* **Hot Accretion Flows**: *hot, tenuous gaseous environment (e.g. Sgr A*)*
	- *Pre-merger flare* Brightening wakes and region within orbits, T dependent
	- *Post-merger drop-off* Bright regions hidden behind new horizon, wakes disperse *Post-merger drop-off* Bright regions hidden behind new horizon, wakes disperse
	- *Inspiral Oscillations* Correlated with GW oscillations, \sim few % variability (challenging)
- **Circumbinary Disks**: **Circumbinary Disks**:
	- *Decreasing luminosity* after decoupling from inner edge
	- *Shifting Spectra* → Pre-merger accretion hierarchy switch
	- *Post-merger Brightening* → Accretion disk falls into merged BH potential *Post-merger Brightening* → Accretion disk falls into merged BH potential
	- *Observability →* Confusable with intrinsic AGN variability, possibly buried by disk *Observability →* Confusable with intrinsic AGN variability, possibly buried by disk emissions emissions
- **Magnetic Possibilties Magnetic Possibilties**
	- Collimated outflows in polar region, regardless of initial gas distribution