




THE CONFORMAL METHOD OF CONSTRUCTING CAUCHY
DATA FOR THE EINSTEIN EQUATIONS

DAVID MAXWELL

Let (U, ηab) be the spacetime. See fig 1. M is our spacelike slice. We have
the field equations Gab + Ληab = 8πTab which we will call (*) and so we have
G(N,N) − Λ = 8πT (N,N), which we will call (**). (*) is equivalent to (**)
holding for all timelike unit vectors. T (N,N) is the energy density as observed by
N , i.e. an observing going through the point with tangent vector N . Ric(N,N)
is the average of sectional curvatures containing N . Similarly, G(N,N) is the
average of sectional curvatures perpendicular to N .

The Gauss equation allows us to compute this average. This leads to “Hamil-
tonian constraint equation”, 1

2
[Rh − |K|2h + (trhK)2] = 8πρ + Λ. (Here, ρ is

T (N,N), i.e. the energy density.) Now see Fig 2. If we take geodesics per-
pendicular to N , and make them together a surface, then this constraint says
1
2
RN⊥ = 8πρ + Λ, i.e. the scalar curvature of “now” is equal to the energy

density. Or “matter gobbles space” (because there’s positive scalar curvature.)
Momentum constraint: Let N(s) be a family of unit timelike vectors through

p (see fig 3). We then have N ′(0) = X is spacelike and η(N,X) = 0. So we then
have

G(N,N) = 8πT (N,N) + Λ

G(N,X) = 8πT (N,X)

We have T (N,X) = −jaXa, the momentum density. The Codazzi equation then
lets us get

∇b [Kab − (trhK)hab] = 8πja.

We’ll now start calling trhK = τ for simplicity. So now we have divK −
dτ = 8πj. This is 4 equations for the constraints (1 for Hamiltonian constraint,
3 for momentum constraint), but 12 unknowns, so the system of constraints
is underdetermined. So then, we have the central questions: 1. How do you
construct solutions with a given property? 2. How do you parameterize the set
of solutions?

The easiest case is when M is compact, vacuum (i.e. ρ = j = 0) and Λ = 0.
This case still has all the significant open problems, so we’ll focus on this case.

Conformal method: To motivate, let’s look for solutions where τ ≡ 0. Such
solutions are called maximal, because we could make the slice smaller by wiggling
the slice a bit (see Fig 4). Here, we have Rh − |K|2 = 0 and −∇aKab = 0. This
tells us trK = 0 (i.e. traceless), and divK = 0 (called transverse), and so K is
transverse-traceless, i.e. is a TT tensor.
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Lichnerowicz in 1944: The set of TT tensors behaves nicely under conformal
changes, i.e. if we let gab be a metric, and σab be TT with respect to gab and
let g̃ab = φ4gab and σ̃abφ

−2σab, then σ̃ is TT w.r.t g̃. Here, the 4 depends on the
dimension n (he didn’t say, but it is 2∗ − 2 = 2n

n−2 − 2), but the -2 is always a -2.
He describes an ad hoc method for constructing TT tensors. So, we can con-

struct σab given gab. He then seeks solutions to the constraints of the form
hab = φ4gab and Kab = φ−2σab. And so this gives us solutions to the constraints
with τ ≡ 0.

The Hamiltonian constraint is satisfied by this data so long as −8∆gφ+Rgφ =
|σ|2gφ−7, which is called the Lichnerowicz equation. He worked on a bounded
domain, with Dirichlet boundary conditions. He proves 1. uniqueness, 2. if
Rg > 0, |σ| small, then existence, 3. if Rg is anything, but the domain is small,
then existence. In his paper he also describes a solution for the n-body problem
using irrotational ideal fluid for the bodies.

As we generalize away from τ ≡ 0, TT tensors still play a role.
Notation: M is the space of Riemannian metrics on M . See Fig 5. This is a

Frechet manifold. So for g ∈M, TgM = C∞S2(M), i.e. symmetric (0,2) tensors
over M . P is the space of smooth positive functions. and M/P is then the
space of conformal classes. M admits a canonical Riemannian metric itself; for
lab,mab ∈ TgM we define [lab,mab] =

∫
M
〈l,m〉gdVg.

TgM admits a trivial decomposition, TgM = Trace(g)⊕TF (g), where Trace(g)
is {fgab : f ∈ C∞(M)}, i.e. trace parts, and where TF is the trace free matrices.
And then kerπ∗,g = Trace(g), where π is the projection onto conformal classes,

and so we can identify TF (M) with T[g]M/P . Moreover, if l̃ab = φ4lab, then

π∗,g̃(l̃ab) = π∗,g(lab).

Moral: Symmetric (0, 2) that conformally transform according to l̃ab = φ4lab
(i.e. trace free ones specifically) represent elements of T[g]M/P , i.e. are tangent
matrices to conformal classes. They can represent small changes of a conformal
class.
Flow(g) = {LXg : X ∈ C∞(TM)}, i.e. all possible you can get by pulling

back by diffeomorphisms, or the set of tangent matrices you can get by flowing
by diffeomorphisms in any given direction. See fig 6. LXab = ∇aXb + ∇bXa −
2
3
divXgab is the conformal killing operator, and is the trace free part of the Lie

derivative of g, Lxg, by construction. CK(g) = {LX : X ∈ C∞(TM)} is thus
the tangent vectors of M/P . since LgX = φ4Lg̃X. This is the set of metrics we
can go through by essentially just changing coordinates.

Suppose σ̃ab = φ−2σab. If we raise indices with respect to the appropriate
metrics, we get σ̃ab = φ−10σab, dṼ = φ6dV and σ̃abdṼ = φ−4σabdV . Thus we
have

∫
σablabdV =

∫
σ̃abl̃abdṼ where l̃ab = φ4lab. This tells us that TT tensors

(like σ) encode cotangent vectors to the set of conformal classes and so are in
some sense conformal momenta of the (conformal) metric.



THE CONFORMAL METHOD OF CONSTRUCTING CAUCHY DATA FOR THE EINSTEIN EQUATIONS3

But not just any cotangent vectors: Consider some LX ∈ T[g]M/P . Then
notice that we have

〈σabdV, LX〉 =

∫
M

σabLXabdV = −2

∫
∇aσ

abxbdV = 0,

by integration by parts. Thus these cotangent vectors annihilate things of the
form LX. Thus TT tensors are (conformal) momenta that don’t care about
diffeomorphisms.

Thus for the conformal method so far, we specify 1. the conformal class of
metric and 2. a conformal momentum (that ignores diffeomorphisms).

There were extensions of this technique by Choquet-Bruhat and York in the
70’s. In 1971, York shows τ ≡ 0 isn’t necessary. In fact, τ ≡ c, a constant, will do.
Again, if we specify (hab, σab, τ) for τ constant. We then seek solutions of the form
hab = φ4gab, and Kab = φ−2σab + τ

3
φ4gab, so τ really is the mean curvature with

respect to the scaled metric hab. Also, again, the momentum constraint is satisfied
automatically, so we just need to worry about the Hamiltonian constraint.

The Lichnerowicz equation (i.e. the Hamiltonian constraint) becomes

−8∆φ+Rgφ = |σ|2φ−7 − 2

3
τ 2φ5

called (1). This is very reminiscent of the Yamabe problem equation,

−8∆φ+Rφ = cφ5

called (2). [The Yamabe problem says that if you can solve (2), then φ4g has
scalar curvature c, where c is constant for the Yamabe problem in specific.] 5 is
a critical exponent [for the Sobolev embedding; see Lee and Parker’s paper “The
Yamabe Problem” for an excellent reference.] So the Lichnerowicz equation is like
the negative case of the Yamabe problem, which is the easy case. The solvability
of (1) and (2) depend on the Yamabe invariant (of the metric g)

Yg = inf
φ>0

∫
M

8|∇φ|2 +Rφ2dV

‖φ‖2L6

.

The Yamabe invariant is negative if and only if there is a g̃ ∈ [g] such that Rg̃ < 0,
or equivalently, Rg̃ = −1. Similar statements hold for Yg = 0 and Yg > 0, though
they are harder to prove.

We can rewrite (1) as

[−8∆φ+Rφ]φ−5 = |σ|2φ−12 − 2

3
τ 2.

The left side is Rh, the scalar curvature of the conformally changed metric. So
we have a solution or not depending on Yamabe class of g. For instance, if σ ≡ 0,
the the right hand side is negative, and so can only solve if g has Yg < 0, i.e. g
is Yamabe negative class. See fig 7 for which ones have solution, as found in Jim
Isenberg’s paper from 1995.
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Now for the constraint problem, we get to specify 1. a conformal class, 2. a
conformal momentum and 3. a constant mean curvature.

The solution technique is the method of sub and supersolutions: We want to
solve −8∆φ + Rφ − |σ|2φ−7 + 2

3
τ 2φ5 = 0. We say φ+ is a supersolution of this

equation if it satisfies it but ≥ 0 rather than = 0, and φ− is a subsolution if the
same holds, but with ≤ 0. If φ+, φ− are super/subsolutions, with 0 < φ− ≤ φ+,
then there exists a solution φ in the middle, φ− ≤ φ ≤ φ+. And so the game
becomes to just find sub and supersolutions.


