




INTRODUCTION TO DECAY OF FIELDS OUTSIDE BLACK
HOLES

PIETER BLUE

1. Explicit Black Hole Solutions

Let (M, g) be a spacetime. We say it is asymptotically flat (AF) if there exists
an open U ⊂ M , and R > 0, and φ : {(t, x, y, z) : |~x| > R} → U such that
φ∗gαβ − ηαβ → 0 as |~x| → ∞. This is a very weak condition. It’s hard to imagine
AF without this. It should be sufficient for my purposes in this talk.

If we have (M, g) is AF with U as above, a black hole is a non-empty connected
component of CI−(U). The event horizon is the boundary of the black hole,
= ∂BH. We will not be assuming any sort of C1 continuation of the spacetime
or similar.

Minkowski space is R3+1, with metric η = −dt2 + dr2 + r2dω2 [dω2 is the
round metric on the sphere]. Let u± = 1

2
t ± r and U± = arctan(u±). Then let

T = U+ + U− and R = U+ − U−. Then

η = (cos2 U+ + cos2 U−)(−dT 2 + dR2 + sin2Rdω2).

The front is a conformal factor, so it doesn’t change any of the causal structure
of the manifold. So, for many purposes we can drop the conformal factor. We
can then embed this in R× S3 and add points for future and null infinity I, and
spacelike infinity i0 and future timelike infinity and past i±. See fig 1.

The Schwarzschild metric is

g = −(1− 2M/r)dt2 + (1− 2M/r)−1dr2 + r2dω2.

We can do similarly, v = t + r + 2M ln((r − 2M)/2M). Then the metric takes
the form

g = −(1− 2M/r)dv2 + dvdr + r2dω2

with v ∈ R, r ∈ (0,∞), ω ∈ S2. We can do exfoliation by surfaces of constant
v. If we have an outward null geodesic, (i.e. it increases in t and r, and then
we change coordinates), then dv/dr = 2/(1 − 2M/r) and so 2M/r becomes a
barrier that can’t be crossed. But see fig 2. This is an analytic continuation of
the spacetime. We could do more [Kruskal extension]. Physically, this spacetime
is a spherical body with mass M . Note that this now satisfies our condition for
AF.

The Kerr black hole solution has parameters (M,a), where the mass is M , and
a is some rotational parameter. The case a = 0 is Schwarzschild. These solutions
are AF. It has a BH for |a| ≤ M . The horizon is now at M +

√
M2 − a2 which
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is largest root of ∆ (see below). If |a| < M , then the exterior of the black hole
is like Schwarzschild, but the interior is different. Let Σ = r2 + a2 cos2 θ and
∆ = r2 − 2Mr + a2. The metric is then

gM,a = −
(
r2 − 2Mr + a2 cos2

Σ

)
dt2 −

(
4aMr

Σ

)
sin2 θdφdt+ · · · .

The coefficient of dt2 is negative for some area outside of black holes, and so is
spacelike somewhere outside the event horizon [the ergosphere]. Also, the cross
term dφdt says that dt is not orthogonal to slices of constant t, like it is for things
like Schwarzschild.

2. R3+1 stability

One of the basic problems of science is to predict the future from the present.
We want to be able to do this in a continuous way, or else little errors would
destroy all prediction. If we take Minkowski, and take some slice of it, we want
to make sure it leads to an evolution more or less like the one we begin with, even
with slight perturbations. We expect to always converge to stationary solutions,
no matter the initial data, and so we should expect stationary solutions to be
stable.

First was found hyperboloidal future stability by Friedrich in 1986. He found
stability in the shaded region of Figure 3. The only dynamical part of the met-
ric/curvature is the Weyl curvature. It is conformally invariant, so we expect
that the Einstein equations are also.

Strategy: conformally transform the spacetime to a local problem in R×S3 (i.e.
extend a little outside of Minkowski space, and then local well posedness gives
stability.) Not: The positive mass theorem implies that either you started with
Minkowski, or the data has mass at infinity. So you have 1−2M/r terms showing
up, which we then get = 1− 2M | sin(R− π)|, and so we have a cusp singularity
at R = π. Thus our solution can’t extend over i0, and so this argument fails if
the slice goes through that point, and so it only works for hyperboloidal.

Global stability by Christodoulou and Klainerman in 1993. For data goes out
to i0, and rougher, so that maybe it doesn’t allow C1 conformal compactifica-
tion. Then K-Nicolo got better results, and Zipser did it with EM. Lindblad-
Rodnianski used different gauge conditions, and divergences from that could be
bounded, which simplified the argument. Bieri did similar with weaker ideas of
AF.

Theorem 2.1. There is some small distance ε > 0 for (Σ, ḡ, k̄). Let trK = 0,
ḡ = (1 − 2M/r)δij + o4(r−3/2) and k̄ij = o3(r−5/2). Let x0 ∈ Σ, and d0 is ḡ
distance in Σ from x0. Let Bij = εabj ∇a(Rib − 1

4
gibR) (Bach tensor?). Suppose

ε > J0 = sup
Σ

((d2
0+1)3|Ric[ḡ]|2)+

∫
Σ

(
3∑
l=0

(d2
0 + 1)l+1|∇lk̄|2

1∑
l=0

(d2
0 + 1)l+3|∇lB|2

)
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is sufficiently small. Then the maximal globally hyperbolic development is geodesi-
cally complete and Riem→ 0 along any geodesic.

Strategy: used generalized energies, and then improves them by using symme-
tries. Used good foliation. Einstein equation is a non-linear PDE, and then used
good properties of non-linearity. First two can be understood in terms of linear
fields.

Also, we should look at simpler model equations, and then look at the full
equations. Models: null geodesic equation:

γ̇α∇αγ̇
β = 0

Wave :

∇α∇αu = 0

Maxwell:

∇αFαβ = 0 = ∇[αFαβ]

Weyl: For a 4 index tensor that has same symmetries of Weyl tensor:

∇[εWαβ]γδ = 0

The linearization of Einstein in Minkowski space is this last one. Outside of BH
we get extra terms from background curvature, so get plus some coupling terms.
The strategy was to look at these and get good decay, and use that decay to get
good decay of Weyl.

3. Kerr stability conjecture

He’d never seen a rigorous statement of this, so he won’t try. He doesn’t expect
a rigorous statement to come up till it’s been proven, since the details will be
tricky. But the idea is that we want that if we take initial data like Kerr black
hole data, they will evolve to one close to Kerr.

Data: We expect |a| < M , so that we don’t have critical spin. [Funny things
happen at maximal spin...] We specify initial data on a hypersurface Σ, either
out to future null infinity or spacelike infinity. It doesn’t matter which one in
this case, because the initial data will be asymptotically Schwarzschildean, and
it is known how to change between the two asymptotic conditions. We need Σ
to extend a little inside the event horizon, in case the horizon changes some after
perturbation.

Solutions: It should have an AF region in the future, and should keep the
black hole. It should converge to some Kerr solution at timelike infinity, i+, i.e.
g → gM ′,a′ , with |M −M ′|+ |a− a′| small.

Birkhoff’s theorem says that any spherically symmetric, AF solution of the
Einstein equations, is exactly the Schwarzschild solution. Thus there is no
Schwarzschild stability, since can’t do perturbations. general non-spherical per-
turbations will provide some angular momentum and thus the solution will not
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be in the Schwarzschild class anymore. However, we do expect |a| << M Kerr
solutions are stable.

Obstacles for proving decay for model equations: We want to show decay to 0
outside of black hole.

(1) Orbits. There are null geodesics that fail to go to infinity or fall into BH,
for instance. These obviously then don’t decay. But similar things can
happen for the wave equation, for instance.

Given ε1, ε2, T > 0 and null geodesic γ, then there exists solutions of
the wave equation ∇α∇αu = 0 with supp [u(0)] ⊂ γ(0) + Bε1 where for
some t ∈ [0, T ] we can find the solution such that∫

{t}×(γ(t)+Bε1 )

|∂u|2 > (1− ε2)

∫
{t=0}

|∂u|2.

This is a result of Ralston. So, most of the energy can be made to stay
near the geodesic. This prevents the decay one wants, but there are tricks
to get around which will be discussed in the next lecture. Eventually,
though, this type of data will decay.

(2) For a 6= 0, there is no positive, conserved energy.
(3) For the Maxwell equations, and for the linearized Einstein equations, there

are bound states (by adding charges for Maxwell, or changing of mass for
linearized Einstein.) These problems don’t have the ”will eventually decay
away” property like the wave equation solutions in 1.

4. Energy generation and strengthening

This is sometimes called the vector field method.
There are some common properties of T , the stress energy tensor:

(1) Tαβ = Tβα (symmetry),
(2) For X, Y causal future directed vector fields, TαβX

αY β ≥ 0 (dominant
energy condition),

(3) ∇αTαβ = 0 (divergence free), and
(4) Tαα = 0 (trace free).

Some of these might fail in the model equations, for some analogue of the
stress-energy tensor.

Null geodesics: γ̇αγ̇β satisfies 1,2, some analog of 3 and 4.
Wave: ∂αu∂βu− 1

2
gαβ∂γu∂

γu satisfies 1 through 3.
Maxwell: (F µ

αF
ν
β − (∗F )µα(∗F ν

β )gµν satisfies all of them
Weyl: We have the Bel-Robinson tensor,(

W µ σ
α γ W ν τ

β δ + (∗W ) µ σ
α γ (∗W ) ν τ

β δ

)
gµνgστ

and satisfies analogs of 1 through 4.


