




THE CONFORMAL METHOD OF CONSTRUCTING CAUCHY
DATA FOR THE EINSTEIN EQUATIONS

DAVID MAXWELL

This is a continuation of previous lecture, so we will assume our slice M3 is
compact and vacuum again.

See the chart from the previous talk, the last figure, that contains the chart for
solvability of Lichnerowicz equation when we have constant mean curvature τ .
This gives a complete parametrization of constant mean curvature (CMC) data
on compact manifolds. But what about non-CMC solutions?

Due to York: ’73. First demonstrates : C∞(S2(M)) = Trace(g) ⊕ [CK(g) ⊕
TT (g)], where CK(g) is the conformal Killing operator of some vector field, i.e.
LWij = ∇iWj+∇jWi− 2

3
gij∇kW

k of some vector field W . TT (g) is the transverse
traceless symmetric 2-tensors.

Prescription:

(1) Specify free data (gab, Aab, τ), where A is a symmetric and trace free 2-
tensor.

(2) Solve ∇aLXab = ∇aAab, and then let σab = Aab − LXab, which is then
TT.

(3) Seek data (i.e. a solution to the constraints) of the form hab = φ4gab and
Kab = φ−2[σab + LWab] + τ

3
φ4gab. This implies we need to solve

−8∆φ+Rφ− |σ + LW |2φ−7 +
2

3
τ 2φ5 = 0

divLW =
2

3
φ6dτ

We will call these the LCBY equations, for the discoverers [Lichnerowicz,
Choquet-Bruhat, York], where φ is an unknown positive function and W
is an unknown vector field.

Central question: Is the conclusive success of the CMC conformal method
realized by this (or perhaps some related) system for non-CMC initial data?

Clearly, if dτ = 0, this system reduces to the other we constructed. We’ve had
only limited success solving this system so far.

Virtues:

(1) Given a background metric g and a solution (h,K) of the Einstein con-
straint equations with h ∈ [g], there exists unique (g, σ, τ) leading to
(h,K). (We will just jump to the chase by just specifying σ instead of
A.)
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(2) The solvability of each individual equation is well understood. For the
momentum constraint, divLW = 2

3
φ6dτ with given φ, is solvable when-

ever φ6dτ is L2 orthogonal to the set of conformal Killing fields (CKFs),
i.e. solutions of LX = 0. Typically, [generically even,] there are none,
so this equation would always be solvable. For the other equation, the
Lichnerowicz equation, we write it as

−8∆φ+Rφ = |S|2φ2 − 2

3
τ 2φ5

Then by Maxwell ’05, a solution exists if one of the following holds:
(a) Yg > 0 and S 6≡ 0,
(b) Yg = 0, S 6≡ 0 and τ 6≡ 0
(c) Yg < 0, there exists ḡ ∈ [g] with Rḡ = −τ 2. d) Yg = 0, S ≡ 0, τ ≡ 0.

This reduces solvability to prescribed scalar curvature, which in this cir-
cumstance was solved in ’95 by Rauzy. We just need the zero set of τ to
be not too big. We’ll call such τ for c) Yamabe negative admissible, or
YNA for short.

If we let S = σ + LW , then S ≡ 0 implies that σ ≡ 0 and τ constant.

Vices:

(1) If there are CKFs, we can’t always solve the conformal momentum con-
straint. Little is known if there are CKFs.

(2) There is a lack of conformal covariance. With the CMC method, if we
are given (g, σ, τ), and compare with a different background metric in
the same conformal class, (g̃, σ̃, τ̃), where the σ̃ and τ̃ are appropriately
conformally transformed, you still get same solution (h,K) if you solve
the Lichnerowicz equation. However, in non-CMC case, this doesn’t work.

Let Kab = φ−2[σab + LWab] + trace. The φ−2 means transforming like
covector, which σ is, but LW transforms like a vector. The identification
of vectors with covectors depends on the choice background metric. See
Fig 1. And so we get different parameterizations of the covector space,
and so different parameterizations via the conformal method.

So what is right generalization of the table from the beginning? The new table
would be expected to be as in Fig 2, where * means that there is a solution as
long as τ is YNA. This table exactly is correct for near-CMC data. By Isenberg,
O’Murchada in ’04, for Yg ≥ 0, σ ≡ 0 and τ = τ0 + ξ where τ0 constant, but
ξ is not, if |τ0| is large enough (compared to the other given data) there is no
solution. This gives the x’s in the table.

There is related work by Rendell. He gave data on S1 × S2 with the standard
metric (so Yg > 0) and with σ ≡ 0. For this data, there is either no solution or
multiple solutions. This is at least consistent with our desired chart.

As far as existence goes for near-CMC, the general strategy is to start with
some positive φ, solve the momentum equation, get a W , then use that to solve
Lichnerowicz equation to find a new φ. We call this combined map ησ,τ . Solutions
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to LCBY equations then correspond to fixed points of ησ,τ . We have many of these
results now. For instance, if |∇τ |/|τ | is small and |∇τ | is small, then ησ,τ is a
contraction map (due to Isenberg and Moncrief in ’96 for Yg < 0, and to Isenberg,
Clausen and Allen for Yg ≥ 0)

An alternative approach is the Leray-Schauder fixed point theorem. Global
barriers: φ+ is a global supersolution if whenever φ ≤ φ+ and W is the solution
of the momentum constraint for φ, then φ+ is a supersolution for the Lichnerowicz
equation for W , as above. We have a similar idea for global subsolution.

If φ+, φ− are global sub and super solutions, we get a fixed point of the equation
by Leray-Schauder stuck between the two, but no uniqueness. This was used by
Holst, Nagy, Tsogtgerel to find the first far-from-CMC data. If Yg > 0, τ is
arbitrary, σ is small but 6≡ 0 and matter is present (ρ 6≡ 0) but not too big,
then there exists a solution to the LCBY equations. The key part is new global
supersolution: we can find conformal factor ψ such that ψ4g = ĝ such that
Rĝ > 0. We then take εψ for ε small depending on τ , and then take σ small
depending on ε. Then εψ = φ+ is a global supersolution.

His [Maxwell’s] contribution was to get rid of the matter requirement by finding
a subsolution as long as there is a global supersolution already.

Theorem 0.1 (Maxwell 09?). Let (M, g) be compact with no CKFs and one of
following true:

(1) Yg > 0, σ 6≡ 0,
(2) Yg 6= 0, σ 6≡ 0 , τ 6≡ 0,
(3) Yg < 0, τ YNA.

Then if φ+ is a global supersolution, then there exists a solution of the LCBY
equations. Uniqueness is not known for these solutions.

This is nice because it lines up with the chart (fig 2). It gives us partial
confirmation of the Yg > 0 check mark in figure 2.

Fly in the ointment: (Maxwell ’09) We consider S1 × T 2 and take particular
data that depends only on S1 with g the flat background metric, and families
of σ of controlled size. We also take τ = τ0 + ξ with ξ as in fig 4. This is
somewhat equivalent to a 2nd derivative discontinuity for the slice we’re looking
at. Even though it is discontinuous, we could still have a smooth solution of the
LCBY equations. See fig 5 for what we would expect to happen, for which data
is solvable. Instead we get fig 6. The chart only gives the number of solutions
with the same symmetry as the data, so “no solutions” and “one solution” could
have more solutions with less symmetry. This is like the Yamabe-null case of the
HNT [Holst, Nagy, Tsogtgerel] solution. If we pick τ0, then pick small enough σ,
we get a solution. However, we would hope that the small σ condition was just
a temporary thing, rather than a permanent feature.

There are similar results on S1×S2 (so Yg > 0) by Cheng, student of Tsogtgerel,
and so the weirdness continues for Yamabe positive.



4 DAVID MAXWELL

What if I picked different metric in same conformal class for S1 × T 2? See fig
7. The homothetic family family moves. This means that a different background
metric says that some other mean curvature is special, since the homothetic family
moves along the axis.

Fragility for same symmetric data: We consider divK−(1+ε)dτ = 0 instead for
momentum constraint. See fig 8 for a similar chart for this case. Thus the exact
value of the constant coefficient of dτ matters, not just the sign or something as
we might have hoped.

This is bad news for parametrization, since all this messiness suggests it won’t
work, at least nicely. We would need a lot of clarification.

Open problems:

(1) Does the naive picture (fig 2) hold generically? (i.e. without CKFs, for
instance.) This could still happen because S1 × T 2 has lots of CKFs. To
approach this, is σ ≡ 0 impossible if Yg ≥ 0? a) yes, of course if CMC or
near-CMC. b) Some evidence for yes in general with Rendell’s example.
c) Mild counterexamples from fig 6. The hard part is that σ ≡ 0 depends
on the choice of background metric, i.e. from (h,K) you can’t tell if σ ≡ 0
is true, you must have g as well.

(2) What about other parameterizations? For CMC, this method works great,
but for non-CMC it feels ad hoc. There are other contenders: conformal
thin sandwich method, but the theory is the same as the standard confor-
mal method. There’s also ”method B.” The idea is that we’re normally
decomposing with respect to g instead of h, so if we do it with respect to
to h, we get an ugly |LW |φ5 with a bad sign somewhere.

However, if we take the conformal constraints [LCBY equations], if we
have a solution, then LW is on the order of φ6. If we put that into the
Lichnerowicz, then we get a term like |LW |φ5, which is with the bad sign.
Thus the difficulty is still there in the LCBY equations, it’s just hidden
in the coupling.

(3) What’s the deal with CKFs? a) They play no role in the CMC theory. b)
No role in Near-CMC non-existence. c) All* non-CMC existence proofs
require no CKFs (or perhaps at least X(τ) = 0 for any CKF, which is
often enough to show τ ≡ 0.)

Suppose I have a solution (gab, Kab) and Xb is a CKF. Take the momen-
tum constraint∇aKab−∇bτ = 0, multiply it by X, integrate over M , then
integrate by parts. We find we need

∫
X(τ)dVh = 0 or

∫
X(τ)φ6dVg = 0.

But we don’t even know what h or g is until we solve using the τ , so this is
nigh impossible to guarantee if there are CKFs. We might hope it’d work
anyway, but Maxwell in ’11 showed that there exists CMC data on S3

and arbitrarily small perturbations τε of τ such that (gσ, τε) is conformal
data with no solution.


