


CONSTRUCTION LOCALIZED SOLUTIONS OF THE
EINSTEIN CONSTRAINT EQUATIONS

RICHARD SCHOEN

Take (Mn, g, k). Then the vacuum constraints (*) are Rg − |k|2g + (trgk)2 = 0
and div(k − (trgh)g) = 0. This is n + 1 equations if we are in n dimensions. If
we are in a spacetime S, and Ric = 0, then the constraint equations are implied
for any spacelike slice M .

The Cauchy problem is the converse of this. If we have the initial data set,
then there is, at least locally, a spacetime with that as a slice.

Again, there are n + 1 equations for the constraints, but n(n + 1) unknowns,
and so we should expect to have lots of solutions.

He wants solutions that are asymptotically flat (AF). Definition: Assume there
is a coordinate system near infinity so that you can write M = K∪Ext where the
exterior region Ext ' Rn \ Bn. Our coordinates will be x1, · · ·xn. Then, a slice
is AF if the coordinates are such that gij = δij + o2(|x|−p) (the subscript 2 means
the second derivatives also fall off at the same rate) and assume kij = o1(|x|−p−1).

If we assume strong enough asymptotics, for instance if p > (n− 2)/2, we can
assign ADM energy and linear momentum to AF manifolds.

E =
1

2
lim
σ→∞

∫
S(σ)

(gij,j − gjj,i)νidσ

Pi = lim
σ→∞

∫
S(σ)

(kij − tr(g)gij)v
jdσ

The condition p > (n − 2)/2 guarantees that R is integrable, which plays into
this being finite and well defined.

The positive energy theorem (PET) says that E ≥ 0 and E = 0 only if
(M, g, k) ⊂ Rn+1, i.e. it is a slice of Minkowski [technically this is proved only for
n ≤ 7]. Thus we can’t find solutions which have, for instance, compact support,
since then the energy would be zero.

But....
What are natural asymptotics? The most natural are the ones given by the

exact solutions. So consider (g, k) ≈ Schwarzschild near infinity. The t = 0 slice
of Schwarzschild, has that k = 0 and g = (1 + E/2|x|n−2)4/(n−2)δ + o2(|x|1−n).
Those then seem like reasonable asymptotics. We could also take non-constant t
slices that have nontrivial energy and linear momentum.

The conformal method does come up with solutions with asymptotics like this.
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For k ≡ 0, we say the slice is time symmetric, and then the constraints are just
R(g) ≡ 0.

Theorem 0.1 (Corvino ’00). Start with g with the above asymptotics. For σ >>
1, there exists a new solution ĝ which is exactly g in ball of radius σ and is
exactly Schwarzschild (with some energy and center) outside of B2σ. (We call
this Schwarzschild metric gÊ,x0.) Also, ĝ is as smooth as g, and the energy of the
Schwarzschild E is very close to the energy of g (it actually converges as σ →∞).

There is a spacetime version of this result, but it is more complicated (we need
that it is exactly Kerr near infinity, for instance).

Outline of proof: Construct a g̃ which doesn’t satisfy the constraints, but has
the center and asymptotics, i.e. something like ξσg + (1− ξσ)gÊ,x0 for a smooth
cutoff function ξσ (see fig 1).

We then find a perturbation h which is small and supported in B2σ \ Bσ with
h ≈ dn where d is the distance to the boundary of the annulus, i.e. it vanishes at
the boundary to high order, which is important. This perturbation is such that
ĝ = g + h and R(ĝ) = 0.

We then get R(g̃+ h) = R(g̃) +Lh+Q(h, ∂h, ∂2h). We invert the linear part,
Lh, and then use Picard iteration and fixed point theory to get a solution. Here,

Lh = hij ;ij − hijR̃ij −∆g̃trg̃h.

Note that L : Sym2 → C∞. We need to invert it to make sure we have the fast
decay to boundary. In order for L to be surjective, need the formal adjoint to be
injective. So, we have

L∗f = f;ij − fR̃ij − (∆f)g̃ij.

We’re very close to Euclidean space since we’re AF. In that case, we would have
L∗δ = f,ij − (∆f)δij. Notice the kerL∗δ are exactly the functions with vanishing
hessian, i.e. span{1, x1, · · ·xn}. In general, the kernel is the obstruction to being
able to do this gluing. This kernel is a n+1 parameter family, but there are n+1
parameters of Schwarzschild to play with (mass and center of mass), and so they
play with each other to work out.

This kind of gives a localization of solutions of the constraint equations.
Suppose we take a solution with good asymptotics, g, AF and with R(g) ≡ 0.

Let U = {p ∈ M : Ricp 6= 0}. In 3 dimensions, this is where the full tensor is 0,
but in higher dimensions it may not be.

Proposition 0.2. If gij = δij + o2(|x|2−n) then either g is flat or

lim inf
σ→∞

σ1−n|U ∩ S(σ)| > 0.

Thus, the set U can’t be a strip or something that has vanishing angle. There has
to be some kind of fixed angle at infinity that is nonzero.
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The energy can also be written

E = −c(n) lim
σ→∞

σ

∫
S(σ)

Ric(ν, ν)dΣ.

Proof: for σ >> 1, that integral for E has to be strictly non-zero. Also, Ric
decays as σ−n. We have

cσ1−n|U ∩ S(σ)| ≥
∣∣∣∣c(n)

∫
S(σ)

Ric(ν, ν)dΣ

∣∣∣∣ ≥ ε0 > 0

So we can only have Ricci flat on a relatively small set.

Theorem 0.3. With A. Carlotto. Start with (M, g) with R(g) = 0 and g =
δ+o2(|x|2−n) (i.e. it decays like Schwarzschild). If 0 < θ0 < θ1 < π and q < n−2,
then there exists some large Λ such that if a ∈ Rn with |a| > Λ and there exists
a ĝ with R(ĝ) = 0 with ĝ = g in I (see figure 2) and δ (i.e. Minkowskian) in O,
the exterior portion. In the transition region Ω, ĝ = δ + o2(|x|−q) (i.e. you have
to give up some fall off rate).

So we can localize solutions in a cone, even for cones of arbitrarily small angle,
though it is impossible to localize solutions generally.

The proof works fairly similarly to the Corvino case, but transition region is
noncompact so have to worry about the decay at infinity. We came upon this
while trying to show that you can’t find solution that is Euclidean on a half-space.
Oops! (This may actually still be true if we assume q = n−2, but that’s another,
harder story.)

(1) There exists a solution of (*) supported in an arbitrarily small cone.
(2) Most of the [ADM] energy is in the transition region Ω, which suggests

that the fall off must be worse, as it is in the theorem. However, the
overall mass is almost the same.

(3) This method then gives new initial data for the n-body problem different
from the gluing of Chrusciel, Corvino and Isenberg. Here we can glue by
just doing two of these and putting cones near (but not overlapping) each
other.

There is also a spacetime version of this theorem.
The main new idea is about how to get the decay correct. Take Hk,−q(Ω),

functions with bounded support in Ω with norm

‖u‖2
k,−q =

k∑
i=1

∑
|α|=i

∫
Ω

r(x)−n+2q+2i|∂αu|2dµ,

where we pick some r(x) > 0 with r(x) = |x| outside a ball. Then we have the
duality H∗0,−q−2(Ω) = H0,q+2−n(Ω). If q < 2−n, this is a negative exponent. This
will be the domain of L∗, defined as before, and so this guarantees we killed the
obstructions, since the kernel of L∗ on this space is trivial (essentially because 1
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and xi don’t go to zero). So in some sense this is easier than Corvino, since we
don’t have to worry about these. There is no obstruction!

The “Basic Estimate”: if u ∈ H0,q+2−n (call p = q + 2− n). Then

‖u‖2,−p ≤ C‖L∗u‖0,−p−2

with no boundary condition on u, and without [the usual] lower order term!
Claim: though you can’t localize solutions, you can almost do it.
Is the center of mass near to that of the original? Seems like it should be, but

this hasn’t been done.
Do think this is false for q = n − 2? Well, we can’t control the constant

multiplying |x|n−2, but we don’t know.


