


FURTHER TOPICS IN DECAY OF FIELDS OUTSIDE BLACK
HOLES

PIETER BLUE

This is a continuation from the last talk.

1. Energy generation and strengthening (Continued)

Last time, we introduced analogs of the stress energy tensors for various model
problems. We have the energy

EX(Σ) =

∫
Σ

TabX
bdνa

For the null geodesics, we define it instead as γ̇aX
a|γ∩Σ. We define

BulkX(Ω) =

∫
Ω

Tab∇(aXb)dµ

or ∫
γ∩Ω

γ̇aγ̇b∇(aXb)d4µ

for null geodesics γ. Here, ∇(aXb) is the deformation tensor, which is also equal
to −1

2
LXg.

A symmetry of a PDE is a differential operator taking solutions to solutions.
Let S = ∪Sn where the Sn are sets of order n symmetries. We can then define

a strengthened energy by

EX,S,n[φ](Σ) =
n∑
i=0

∑
S∈S

EX [Sφ](Σ).

This notion of strengthening is due to Klainerman in some sense.
For surfaces Σ,Σi with causal, future directed normals, suppose we have a lens

shaped region Ω (i.e. with top and bottom that are both causal surfaces, but
no timelike side regions) with ∂Ω = Σi − Σ1. [I know this isn’t quite correct
subscripts and such, but I’m not quite sure what they are supposed to be.]

EG1: If X is a causal future-directed vector, then the dominant energy condi-
tion (or for null geodesics γ) implies that EX(Σ) ≥ 0.

EG2: (iii) (from the previous lecture, or for null geodesics γ), then EX(Σ2)−
EX(Σ1) = Bulkx(Ω)

EG3: EX,S,n has the same properties.
1



2 PIETER BLUE

Ex: The R3+1 wave equation. It has an energy related with ∂t. If

Tn = {∂n1
1 ∂n2

2 ∂n3
3 :

∑
ni = n},

then ‖u(t)‖2
L∞ = E∂t,T,1[u]({0} × R3).

This lets us see what problem is with problem is Kerr, which has no conserved
energy quantity because ∂t fails to be timelike everywhere. The normal vector
to a t = 0 slice of Kerr has a conserved energy, but then we don’t get a Killing
field. Thus you can only get positive non-conserved energy, or conserved energy
that may be negative.

How is this overcome?

2. Morawetz estimate outside black holes

By this we mean an integrated local energy estimate, not something to do with
the vector field K = (t2 + r2)∂t + 2rt∂r, which she also did.

For the wave equation, a = 0 (no spin, so Schwarzschild),

E∂t &
∫
exterior

((
∆

t2 + a2

)2

|∂t|2 +

(
r − 3M

r

)
1

r2
(|∂tu|2 + |∇s2u|/r2)

)
r2drd2ωs2 .

We can think that as waves are moving out, 1/r2 goes like 1/t2, and so one can
see why we can integrate over the exterior portion of the spacetime. One might
worry about those orbiting null geodesics near the black hole, but they are at
3M and the term that vanishes there in the integral means they add nothing to
this integral.

For |a| << M : The sphere of rotating orbits bifurcates, so r − 3M must be
replaced by some measure of distance from the orbits.

Why is it useful? Application in |a| << M :
Let T = ∂t + ξ a

r2++a2
∂φ where r+ = M +

√
M2 − a2 and ξ is as in figure 1. This

vector is timelike in the exterior region and becomes null at r = r+. We have
that supp∇(aT b) is only where ξ has support, i.e. between 10M and 11M . We
then get |∇(aT b)| . |a|/M .

Let’s assume we have a vector field A with a bulk of the form of the ugly
integral a few paragraphs ago, and energy is bounded by the T energy. Then
we’d say

ET (t)− ET (0) = BulkT ({t′ ∈ [0, t]})
. |a|BulkA
. |a|(EA(t)− EA(0))

. |a|(ET (t) + ET (0)).

This then gives that ET (t) . (1 +C|a|)ET (0). This energy is not conserved, but
it is positive, and can be uniformly bounded at later times by the original time.

For different cases and equations, a similar results was obtained by:
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For a = 0, for the wave equation, By Blue and Soffer, By Blue-Sterbensz,
Dafermos-Rodnianski, based on using an A introduced by Laba-Soffer.

For Maxwell: Blue, Sterbenz-Tataru (generic spherically symmetric black holes)
For Einstein: Holzegel (looks at something stronger than linearized gravity,

and then proves decay estimates.)
For |a| << M : Done by Dafermos-Rodnianski (uniform bound on energy by

looking at spectral decomposition, then found decay for certain frequencies),
Tataru-Tohaneanu (spectral methods), Andersson-Blue (just using differential
operators, no spectral methods)

For |a| < M : Dafer-R (got the estimates), Shlapentokh-Rothman

3. Killing tensors

A Killing p-tensor is a symmetric p tensor such that the symmetric part of the
covariant derivative is equal to 0, i.e. ∇(bKa1,···ap) = 0.

With Killing vectors, we know a lot. If k is a Killing vector, then

(1) the flow generated by k is an isometry.
(2) the bulk term is equal to 0, so we have conserved energy for null geodesics

and fields.
(3) LX commutes with the wave, Maxwell and Weyl equations. This defines a

symmetry of a PDE. Hence (assuming certain self adjointness properties),
this allows for spectral decomposition that is compactable with the PDE
we’re looking at.

If K is a Killing tensor, we know much less.

(1) If γ is null geodesic then ∇γ̇(Ka1,···an γ̇
a1 · · · ) = 0

(2) If we are Ricci flat, then [∇aK
ab∇b,∇c∇c]u = 0, i.e. it commutes with

the wave equation).

The relation between the two is less clear than we would like however...
For Kerr: Maxwell and linearized gravity can be decomposed into spinor or

null frame, and some of those components have spectral decomposition (we can
apply separation of variables).

4. Null geodesic model

Let

Kab = ∂aθ∂
b
θ +

1

sin2 θ
∂aφ∂

b
φ + 2a∂

(a
φ ∂

b)
t + a2 sin2 θ∂at ∂

b
t .

Also let Ω2 = ∆Σ
(r2+a2)2

,h = ∆
r2+a2

and VL = ∆
(r2+a2)2

→ 1
r2

(1− 2M/r) as a→ 0. Let

Rab = −∂at ∂bt −
4aM

(r2
+a

2)2
∂

(a
t ∂

b)
φ −

a2

(r2 + a2)2
∂aφ∂

b
φ + VLK

ab.

We can then get Ωgab = h2∂ar∂
b
r +Rab, where g is the Kerr metric. Thus, we’ve

managed to hide all the θ dependence in K and Ω.
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Now let’s look at null geodesic equations, 0 = Ω2gabγ̇aγ̇b. We can use the
previous equality to get (hgrr)2ṙ2 = −Rabγ̇aγ̇b ≡ −R. These are all Killing
tensors contracted with γ̇, and so this is a function of r alone. This was found in
the 60s and 70s. ṙ2 can never be negative, and so we have turning points when
R = 0. We have asymptotic orbits approaching from either side at maxes or
mins of R, and so there are orbits when R = 0 and ∂rR = 0.

For a = 0, let the energy be e = ∂at γ̇a, and the total angular momentum be
l2 = Kabγ̇aγ̇b. l has all the angular terms so this makes some sense.

Consider orbit condition: Let ∂r(−e2 + VLl
2). e, l are constant and so we

get zeros at r = 3M . In Kerr, it is much more complicated, but the condition
is continuous in a. These orbits are unstable, which implies that ∂2

rR < 0.
[Technically the other implication.]

Let A = f∂r, where f is not dependent on φ or θ. Then

2BulkA =

∫
γ̇bγ̇aLag

abdλ =

∫
γ̇aγ̇bg

abΩ2LAΩ−2 + γ̇bγ̇aΩ
−2LAΩ2gabdλ.

The first term is zero, and so we just get the second one.
We calculate

LAΩ2gab = (f∂rh
2 − 2h2∂rf)∂ar∂

b
r + f∂rRab

= −2h3(∂r(f/h))∂ar∂
b
r + f∂rRab.

Let f = h∂rR so that we get a perfect square for the last term. We then get

BulkA =

∫
h4Ω2(−∂2

rR)(γ̇r)
2 + f(∂rR)2dλ.

The second term is manifestly nonnegative. The first term is positive by the
unstable orbit condition above [which gives R < 0].

For a = 0, we get f = −h(2/r3)(r − 3M)l2. This is bounded, and so l−2EA .
ET and

BulkA

∫
AΩ−2(−∂rVL)(γ̇R)2 + (4/r6)(r − 3M)2l2dλ.

We then get the Morawetz type estimate. I have as much of radial derivatives as
I like, and I can trade in l2 to get enough angular terms, and so I get it of the
right form.

In Kerr, ∂rR is a measure of distance from orbits, so we get what we said we
had to do earlier.

For the other model equations?: We have here LAΩ2gabγ̇aγ̇b ≥ 0. It is not the
dominant energy condition that gives this, but some nice properties of geodesics.
For the wave equation,

Tab = ∂au∂bu−
1

2
gab∂au∂

au

and we get LAΩ2gab∂au∂b ≥ 0 for the same reason as for null geodesics. There
are then some tricks to get rid of the trace of T .
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For Maxwell, LAΩ2gabTab has no good properties. But, the middle component
satisfies a wave-like equation, which implies Morawetz estimate for that compo-
nent. Then, we can show control in the middle component implies control on the
rest of the components.


