


THE COSMIC CENSORSHIP CONJECTURE

MIHALIS DAFERMOS

This will be a kind of overview of what we currently know. Honestly, it’ll be
more like a picture book rather than an encyclopedia.

Weak cosmic censorship (WCC): For generic asymptotically flat (AF) vacuum
data, future null infinity, I+ is complete.

We can define this without actually defining I+, and so this has a precise
formulation.

Strong cosmic censorship (SCC): For generic AF vacuum data, the maximal
Cauchy development is inextendible as a suitably regular Lorentz manifold.

There’s a lot of physics and math that goes into what “should be” the choice
for “suitably regular”. There will be more on that later.

Most of our intuition comes from reduced versions of these conjectures under
symmetry. For example: for both version, we can assume spherical symmetry.
There aren’t that many spherically symmetric spacetimes... They’re true for
this case since only the Schwarzschild family is spherically symmetric [Birkhoff’s
Theorem].

Ok, so let’s get rid of the vacuum assumption too, so that we have something
left to do. We’ll instead say we want “reasonable matter.” This means we have
equations for matter coupled now.

Why is one version weak and one strong? One might get the impression that
one implies the other. Actually, they’re logically independent. Christodoulu says
we should call WCC the global existence, SCC the global uniqueness theorems.

We will be using Penrose diagrams, and so we’ll describe them a bit. A spheri-
cally symmetric spacetime is one where you can write the metric as−Ω2(u, v)dudv+
r2(u, v)dσ, where dσ is standard on unit sphere. We can think of this defined as
a warped product between a domain in the u, v plane and S2, as in figure 1. It
is easy to show that if the initial data is spherically symmetric that the maximal
development is also. It can have 1 or 2 ends, modeled by Minkowski (see figure
2) and Schwarzschild (see figure 3, [Kruskal extension]) respectively. The figures
show the part of the u, v plane that they use in the warped product. [The S2

factor is suppressed.] They also show the Cauchy surface as a horizontal line.
We say M is the overall manifold, and we have to be careful about which

boundary is in the manifold and that which isn’t (the left side is for Minkowski,
but the rest aren’t). You might think the rest of the boundary has no natural
meaning, but it does, in a coordinate independent sense.
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We can consider, in general, 1 or 2 ended data (see fig 4). A priori, the upper
boundary is unknown. However, for spherically symmetric spacetimes, we can a
priori define null infinity, I+, and so we can identify part of this boundary as null
infinity. It is simply defined as all points of the boundary that are limit points
of null curves in spacetime (as sketched), such that our function r → ∞ along
them. Note that r is not a coordinate function. I+ may or may not include
it’s future endpoint, but it will be connected. It could also be empty, but if the
energy conditions are reasonable, and the asymptotic convergence is fast enough,
then it will be non-empty.

If we define the asymptotics a bit better, we can get an affine parametrization
of I+, and say if it has infinite affine length. More pedestrianly, we can redo the
coordinates, using U , such that ∂r/∂U = −1. We can then ask if the coupled U
coordinate ranges from −∞ to∞, which is equivalent to asking if I+ is complete.
An interpretation is that far away observers will observe for all time.

The story begins with Oppenheimer-Snyder spacetimes in 1939. They consid-
ered the Einstein dust model, which is an Einstein-Euler system, but the equation
of state of the fluid is very easy; it is jus pressure p = 0. Also, they considered
data with a ball of dust near center of radius r = R. (see fig 5). The ball is
of constant density, and is surrounded by vacuum. The inside of the “star” is
homogeneous even! We can think of the matter as a collapsing star. The radius
goes to 0 as we evolve. Since the outside is exactly Schwarzschild, we have that
I+ is complete. This was the first data that evolved into a black hole.

The top boundary of this spacetime is singular! We have observers getting
obliterated at the upper boundary. There are curvature blow ups of all types at
that boundary, and Jacobi fields get all twisted up as they approach it. This is
related to the folk theorem that it can’t be extended even as just a continuous
spacetime, though it can’t be extended for sure in C2.

Chirstodoulou in ’84 kept the model, but didn’t just use homogenous matter,
though he kept spherical symmetry. See fig 6. If using increasing density ρ, it was
known that you get shell crossing singularities. These are known to be inessential
singularities, but they are ugly to look at, so he ignored this case. He showed
that there is an open set of initial data such that the diagram looks like drawn
in fig 6 AND another open set with diagram like fig 7, with closure of the second
family including the Oppenheimer family. For the first family, I+ is incomplete,
and you can smoothly extend the solution! Thus both censorships fail... for this
model of matter.

For the second family I+ is complete, but we can extend the metric over the
dotted line in the upper left. So SCC fails for this one. Thus SCC fails even just
around Oppenheimer-Snyder. It’s prediction of SCC is not stable, even though
we were trying to use it to form intuition about the full case.

For both, we have that there is a ρ =∞ singularity at the upper left dot.
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So shouldn’t we just kill the conjectures? Well, it may be that the model of no
pressure is just a bad model, since when we evolve, we get infinite density and so
clearly there shouldn’t just be no pressure.

Einstein-Scalar field model: Einstein coupled with wave equations for matter.
Motivations: it is the simplest type of matter, it satisfies a linear equation, and
it models the degrees of freedom of the vacuum in some sense. There’s even an
equation of state for fluid that gives an equivalent formulation. It was studied by
Christodoulou and others 1970-2001.

We might hope that for this model, that figure 6 could never happen. But...
there are solutions such that fig 8 holds. The second one has naked singularity.
There are more examples like the other bad ones. For the first one, if WCC is
going to be true, we need generic for this statement, since we have an example.
Because of this, and because the scalar field is expected to act kind of like vacuum,
we expect bad solutions like this to exist for vacuum data.

But he also showed that for generic initial data, the diagram looks like one of
Fig 9, where for the 2nd one the BH is the right kind singularity, and all observers
going to the BH die in the BH. Thus WCC and SCC are true for this model (still
assuming spherically symmetric). The set of solutions that don’t look like this is
codimension 1 in the set of all solutions.

What is generic? Well... Let’s give cartoon of proof, because the definition of
generic really depends on proof. The hope before was to find some sort of global
estimate, but that’s doomed to fail because of the bad solutions.

We start with a solution that is bad, as in figure 10, and show that it is in a 1
dimensional family in the moduli space that is nice. How? If want to perturb that
upper left singularity, we might think to change the part of the initial data that
collapses to there, but that turns out not to work. We instead need to change the
outer part. These waves want to collect near this. We show that the family has
trapped surfaces in solutions near it, and we can use them to show regularity.

For the full CC, Kerr is a weird problem solution. It is much worse than that
first one of Fig 8, since the upper left dotted line is niceish. But for Kerr we have
Fig 11. There’s no first singular point, unlike the other! Any observer could get
into the weird extended region.

Well, back to spherically symmetric case, we can construct similar solutions
for more complicated matter models, for instance in Einsstein-Maxwell we have
the Reissner-Nordstrom solutions, which still look like fig 11. It is the unique
spherically symmetric which is AF with EM. Thus the SCC is false for this
“matter” model.

We could also couple in also scalar field by just adding the stress energy tensors
together. We could do worse by coupling them to each other by taking a charged
scalar field. In this model we need 2 ends for completeness, so we also have
to think about that. It’s much like the bottom of fig 12. Kommeni considered
strongly “tame models,” and showed that I+ is complete. Also, for tame models,
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the boundary of spacetime will have at most the pieces in Fig 12. It is inextendible
through the top piece, so if the two side pieces are empty, we also have SCC.

We hope that they are both empty. Consider figure 13. We have an observer
on outside, A, that sends info to the guy on the inside B. The frequency of the
info sent is infinitely blue shifted as we approach the Cauchy horizon, and so
something should blow up at Cauchy horizon, or perhaps before because of the
non-linearities of the Einstein equations. This is why we conjectured SCC in the
first place.

However, the null components in Fig 12 are proved to be non empty. Also, we
can extend the metric beyond them. So SCC is false. But it’s singular in the C2

sense modulo some extra fact, so is true if say C2 metric.
Is the top boundary there also? If the data is near Reissner-Nordstrom, then

there is no top part. The conjecture is that for small neighborhoods of Kerr, for
vacuum, you would get the same thing. So there may be no spacelike singularities
(generically).

In some sense, a C0 continuation is too weak, since we might expect we want
weak solutions of Einstein with L2 Christoffel symbols in some sense.

The same holds near the Reissner-Nordstrom solution in asymptotically de
Sitter space as well.


