


QUASI-LOCAL MASS IN GENERAL RELATIVITY

MU-TAO WANG

Fundamental difficulty: There is no mass density for gravitation. This is im-
plied by Einstein’s equivalence principle. Therefore, an equation like

mass =

∫
Ω

mass density

for Ω a spacelike region (which is called a bulk integral) is impossible.
Therefore, most of our understanding is on total mass of an isolated system,

i.e. an asymptotically flat (AF) spacetime. The (total) mass is then measured as
a flux 2-integral at asymptotic infinity.

It would be extremely useful to have a quasi-local description of mass. For
instance, most physical models [such as for particles] are finitely extended regions.

In 1982, Penrose, for this reason, compiled a list of major unsolved problems
in GR. The number 1 problem was: find a suitable definition of quasi-local mass
and energy momentum.

Plan for the 2 days:

(1) Energy and mass in special relativity
(2) energy and mass in GR
(3) State the problem and expected properties (of quasi-local mass)
(4) Brief survey of known quasi-local mass constructions [end of day 1]
(5) Introduce proposal by Wang- S.T.Yau from 2009
(6) Applications of this new quasi-local mass, including invariant mass conjec-

ture in GR and Quasi-local conserved quantities and dynamical formula
for these alongside the Einstein equations

Consider a matter field in R3,1. Associated with it, there is an energy momen-
tum tensor of matter density Tµν , a (0, 2) symmetric tensor, with ∂µTµν . Take
Ω ⊂ R3,1, a spacelike region. See figure 1. Let tµ be a translating Killing field
(unit) future directed. Let uµ be the unit future time normal of Ω. Then we can
define

∫
Ω
Tµνt

µuν to be the energy intercepted by Ω and seen by the observer tµ.
By the dominant energy condition (DEC), this integrand is non-negative. On

the other hand, Tµνt
µ is divergence free. Thus it is dual to a closed 3 form, i.e.

dω for a 2-form ω (since we’re in 3 dimensions). Thus we can write∫
Ω

Tµνt
µuν =

∫
∂Ω

ω

for some ω that is linear in tµ. We can minimize among all such tµ, and that
gives you a quasi-local mass. The value of the integral is the quasi-local mass.
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The dual of this integral gives the quasi-local energy momentum 4-vector [since
the integral is essentially just giving the time direction part of the full energy
momentum 4-tensor].

Replacing tµ by other Killing fields, we obtain (by plugging in a rotation Killing
field) quasi-local angular momentum or (by plugging in a boost Killing field)
quasi-local center of mass.

What about in GR? There is a Tµν in GR, with ∇µTµν . It appears in the
Einstein equations,

Rµν −
1

2
Rgµν = 8πTµν .

Why can’t we play the same game? Tµν only accounts for energy contribution
from matter fields. For example, Schwarzschild has Tµν = 0, but there is still
gravitational mass. So we can’t just integrate Tµν to get a quasi-local mass.
Plus, we might not have Killing fields to get conserved quantities anyway.

Recall that the Einstein equation is the Euler-Lagrange equation of the Einstein-
Hilbert action. For a spacetime domain, this [integrated] action is

1

16π

∫
M

R +
1

8π

∫
∂M

K +

∫
M

L(g, φ)

where the last integrand is the Lagrangian for the matter fields. The K is really
the mean curvature. That entire integral with K is a divergence term, which we
can rewrite as

∫
M
∂µI

µ. Thus w get some quadratic term in the first derivative
of the metric.

We can apply Hamilton-Jacobi analysis to this. We obtain T ∗µν (a quadratic
expression of 1st derivatives of the metric), the Einstein pseudo tensor. We still
have ∂µT ∗µν = 0. However, it is not symmetric, and not even a tensor! It depends
on the coordinate system we pick. In general, mass density is such a quadratic
expression of 1st derivatives, but locally we can make 1st derivatives of the metric
0, so this can’t quite do what we want correctly.

However, in an AF spacetime, we can choose coordinates, and express mass as
a 2-integral at the infinite boundary.

Total mass definitions: Spatial infinity (or ADM) energy momentum. Take
initial data (M, gij, Pij), where P is the 2nd fundament form, and g is the induced
metric which is AF. We say that (M, g, P is asymptotically flat if there exists a
compact set K ⊂ M such that M \K is a union of ends (i.e. diffeomorphic to
complements of balls in R3), and gij − δij = o2(r−α) and Pij = o1(r−α−1) for
α > 1

2
. Without that last condition on α, there are some problems that arise.

We can then define ADM energy by

E = lim
r→∞

1

16π

∫
Σr

(gij,j − gjj,i)νidΣr
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for the coordinate sphere Σr. Similarly, we can define ADM momentum by

Pi = lim
r→∞

1

8π

∫
Σr

πijν
jdΣr

where πij = Pij − trgPgij. In this case we have the positive energy theorem,
which was proven by Schoen, Yau and Witten. Under the DEC, we have that
(E,Pi) is future non-spacelike, with m =

√
E2 −

∑
P 2
i ≥ 0, and this quantity

equals zero only if the data corresponds to a hypersurface in R3,1.
Null infinity (Bondi-Sachs) energy momentum. Suppose that outside a com-

pact set, there exists a spacetime coordinate system, W (retarded time), r, x1

and x2 such that the spacetime metric is of the form

−UV dw2 − 2Udwdr + gab(dx
a + uadw)(dxb + ubdw)

We can write down the expansion for the metric coefficients, and get

V = 1− 2m(w, xa)

r
+ · · · .

where this expansion defines m(w, xa), which is called the mass aspect function.
On each hypersurface w = c, E =

∫
S2(∞)

2m(c, xa)dS2 and Pi =
∫
S2(∞)

2m(c, xa)x̃idS2

where x̃i are the first 3 eigenfunctions of S2. There is also a PMT for this.
We can see that these two total masses are both expressed as flux 2-integrals

at infinity, and this is possible because gravitation is weak at infinity, which says
that there exists asymptotic flat coordinates. The problem is that there is no
ground state for gravity.

But what if gravitation is strong?
Problem of quasi-local mass: For any spacelike 2-surface in a spacetime that

bounds a spacelike region (see fig 2), we want to define quasi-local mass and
quasi-local energy-momentum. The expected properties are

(1) Positivity (at least for “large convex” spheres, since gravitational binding
energy may be negative locally)

(2) Rigidity. every surface in R3 has mass equal to 0.
(3) Asymptotics. The large sphere limit should be ADM mass (or Bondi mass

on null surfaces.) And the small sphere limit should recover the energy-
momentum tensor if there is matter, of the Bel-Robinson tensor if it is
vacuum.

(4) Conservation law or monotonicity. For example, in a spacelike direction
we should be able to control rate of change (applications in the Penrose
inequality), and similarly in causal directions (applications in the Einstein
equations)

So far, there are 4 [main] different approaches to quasi-local mass [for AF
spacetimes].

(1) Variational approach (Bartnik, Bray, others). Based on a quasi-localization
of the ADM mass.
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(2) Twistor or spinor approach (Penrose, Dougan-Mason, Ludvigsen-Vickers,
others).

(3) Hawking mass (Hawking, Geroch, others).
(4) Hamilton-Jacobi method (Brown-York, Hawking-Horowitz, Kijawski, Liu-

Yau, others)

We will focus on the last two approaches, since they seem to have more application
to mathematical relativity and they are closely related to each other.

Both of them use only the induced metric on the (spacelike) surface Σ and
the mean curvature vector. Recall that on any spacelike 2-surface, there exists a
unique normal vector field ~H such that the variation

δV |Σ| = −
∫

Σ

〈H,V 〉dΣ

for any vector field V along Σ. See figure 3. In particular, when V is a null
normal, δV |Σ| is the null expansion, [θ+]. Thus ~H is closely related to energy or
mass by the Penrose singularity theorem. If we assume H is spacelike, then√

−8ρµ =
√
−8trξtrξ = |H| > 0.

Hawking mass:

mH =

√
|Σ|
16π

(
1− 1

16π

∫
Σ

| ~H|2dΣ

)
There is also a time symmetric version (P = 0). Replace | ~H|2 by k2 where k

is the mean curvature off Σ as the boundary of Ω. In general we have | ~H|2 =
k2 − (trΣP )2, which is why we can do this.

For a spherically symmetric space time the metric can be written

gabdx
adxb + r2(x1, x2)dΩ2,

where the first term is on a Lorentz manifold Q1,1. We have ~H = −2
r
∇r. Then

mH =
r

2
(1− |∇r|2)

We can compute

∂cmH = −4πr2∂ar(T ac − δac trgT )

for Tabdx
adxb+r2SdΩ2. Using the DEC, we can then determine in which direction

this mass can be increased.
This mass also has nice monotonicity along inverse mean curvature flow in the

time symmetric case. For this flow, we say ∂Σ
∂t

= 1
k
ν. This is instrumental in

the proof of the Riemannian Penrose inequality of Huisken-Ilmanen. They show

that the ADM mass is greater than or equal to
√
|Σ|
16π

, where Σ is the outermost

minimal surface. This is because mH is increasing and it approaches the ADM
mass.
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Such monotonicity holds for spacetime IMCF (Freidrich) (he used it for the
non-time-symmetric Penrose inequality) and for IMCF on null hypersurfaces. In
that last case, there is also a Penrose inequality for the Bondi mass, which is
again greater than or equal to same quantity.

The existence of the flow and the asymptotic behavior of Hawking mass remains
obstacles to the proof.

Hamilton-Jacobi method:

M =
1

8π

∫
Σ

H0 dΣ− 1

8π

∫
Σ

| ~H| dΣ

where H0 is the mean curvature of isometric embedding of Σ into R4. (If KΣ > 0
then we have uniqueness.) Notice that here we have a lower power of H. This
form of the mass is due to Liu-Yau, Kijowski, Man, etc.

In the time symmetric case, we can replace | ~H| with k. This is the Brown-York
mass, which has good positivity by Shi-Tam.

In the spherically symmetric case, we have M = r(1 − |∇r|), which implies
that mH = M −M2/2r at any p ∈ Q, where Q again, is the quotient manifold
of the spacetime by factoring out the S2.

Rigidity: We test any Σ ∈ R3,1. If Σ ∈ R3, then M = 0. But mH < 0 unless
Σ is a round sphere! If Σ ∈ C, a light cone in R3,1, then mH = 0, but M > 0
unless Σ is again a round sphere.

We can compare the masses on the Schwarzschild spacetime also. If on totally
geodesic slice, then both are good, but if we slice a light cone or a round cone,
then both are greater than the Schwarzschild mass and can be made arbitrarily
large...

There exists a slice in Schwarzschild, −(1−2m/r)dt2+(1−2m/r)−1dr2+r2dΩ2,
which is essentially Minkowskian. Consider a hypersurface t = f(r) with f ′(r) =√

2mr/(1−2m/r). The induced metric is exactly the same as on R3 and the 2nd
fundamental for it is equal to

√
2mr−3/2(−1

2
dr2 + r2dΩ2). Thus the ADM mass

for this slice is zero!


