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Outline:

(1) Lorentzian spacetimes
(2) Foliations
(3) Null Hypersurfaces
(4) Their Role in GR

We will consider spacetimes (M4, g), where M is a 4-dimensional manifold,
and g is a Lorentzian metric solving the Einstein equations (1),

Gµν = Rµν −
1

2
gµνR = 8πTµν

where T is the energy-momentum tensor.
If we set T = 0, we still get interesting behavior. We can then derive the

Einstein vacuum equations, Rµν = 0, (2). If we do not say otherwise, we will
assume that our spacetime is vacuum.

Assume (M, g) is oriented, as smooth as we need and solves (2). We look
at asymptotically flat (AF) solutions, and we will care about things like neutron
stars merging and releasing gravitational radiation. See fig 1: it releases radiation
on null hypersurfaces coming off the binary inspiral.

We will use the idea of causal curves. If we want to send information, we can
use timelike or null curves. This notion of causality is important. Hermann Weyl
first introduced it, though he though of things differently than we do now.

We say γ is a causal curve in M if it is a differentiable curve where the tangent
vector γ̇ is either timelike or null at each point p ∈M .

See figure 2. The causal future of a point p ∈M , J+(p), is the set of all points
q ∈ M for which there exists a future directed causal curve from p to q. Also,
J+(S) = {q ∈M : q ∈ J+(p) for some p ∈ S}. The past, J−, is defined similarly.

The boundaries ∂J+(S) and ∂J−(S) for closed sets S are null hypersurfaces.
They are generated by null geodesic segments.

These null hypersurfaces are realized as level sets of a function u which satisfies
the eikonal equation, gµν∂µu∂νu.

In general, we have the following definition:

Definition 0.1. Some hypersurface H is called a null hypersurface if at each
point x ∈ H the induced metric is degenerate, i.e. there exists some L 6= 0 lying
in TxH such that gx(L,X) = 0 for any X ∈ TxH. [Thus, there is a tangent vector
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to the hypersurface such that everything else in the tangent space is “co-null”
with it.]

The hyperplane TxH ⊂ TxM can also be defined by a covector ξ ∈ T ∗xM .
Define TxH = {X ∈ TxM : ξ ·X = 0}. Thus we can represent H as a (0-)level set
of a function u. In that case, ξ = du(x). We can set, therefore, in an arbitrary
frame, Lµ = −gµν∂νu. Then we have g(L,X) = −du ·X and L is g orthogonal to
H. Thus H is a null hypersurface if and only if Lx ∈ TxH for every point x ∈ H.

Each of the level sets of u will be a null hypersurface. If we take X = L, since
g(L,X) = 0, we then have g(L,L) = 0 and so gµνL

µLν = 0. In terms of du, this
implies the eikonal equation again, gµν∂µu∂νu.

Important: L is actually a geodesic vector field. Proof: easy.
See fig 4. We take a null cone C and a cross section S. How could we construct

such a C from S? The integral lines through L are null curves, which we call Gx.
Look at Px = (TxS)⊥ ⊂ TxM . Px is a 2-dimensional linear space. (see fig 5) This
lets me differentiate in outward and inward directions. Select a future directed
null vector Lx which generates a null line Gx for every x ∈ S. This is defined up
to a positive constant and gives a vector field L on S. We can transform it like
L 7→ aL, where a is a positive function on S.

We can then have g(L,L) = −2, where we have the transformation L 7→ 1
a
L.

We can have initial conditions on S, and then C = ∪x∈SGx (see figure 6).
Define χ(x, y) = g(∇xL, Y ) for X, Y ∈ TxS to be the 2nd fund form of S with

respect to C. It is a symmetric bilinear form living on S.
Let Sλ = {Gx(λ) : x ∈ S}, which is something like the λ level set of the

geodesics. Define an affine function s on C by requiring Ls = 1 and s|S0 = 0.
If C is the light cone of a point, the situation is pretty simple. Start with

p ∈ M . See figure 7. Pick at p a unique future directed timelike vector T .
Consider a spacelike hypersurface orthogonal to T . In here, look at the unit
sphere S2, and take unit normals N . For every unit spacelike vector N ∈ S2 we
have L = T +N . Now, L is future directed null at p.

Define a flow φt which is generated by L on C: φt(Gx(s)) = Gx(s+ t). We can
extend a vector field X on S (tangential to S) to C by taking [L,X] = 0. Then
X is tangent to each level set Sλ. See fig 8. We then have XGx(s) = φsXx. This
is a Jacobi field of sorts.

It is sufficient to look at a vector Xx ∈ TxS, transport it and then use Jacobi
fields.

Once we have our nice Jacobi fields, we can derive variational formulas. We
can write the 1st variational formula. If we take Jacobi fields X and Y along a
given generator, and alow γ to be the induced metric on S, i.e. γ = g|TS, then
∂sγ(X, Y ) = 2χ(X, Y ). [Thus this 2nd fundamental form is the derivative of the
induced metric as we change s, i.e. as we go up H.]
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Why should we care? For tomorrow: We can add the other second fundamental
form, χ(X, Y ) = g(∇XL, Y ), both of which we can split into trace (trχ, trχ) and
traceless parts (χ̂, ĉhi). The traceless parts we will call shears. [

We also need the torsion: ζ(X) = 1
2
g(∇XL,L) for any X ∈ TS. We can then

show that ∇LL = −2Z defines the corresponding vector field Z.
These shears will be a main ingredient tomorrow.
A closed trapped surface S is a 2-dimensional surface such that trχ < 0 on

it (since this means that the outward nulls are going in). The Penrose incom-
pleteness theorem says, with some other assumptions, that there are future null
incomplete geodesics.

Christodoulou in 2008 showed the formation of a BH in the vacuum case. There
were later refinements later by Klainerman and Rodnianski. His work shows that
if there is enough energy coming in by gravitational waves, we can form a BH!
We will talk about this radiation tomorrow.

Gravitational Radiation goes out on null geodesics, and we usually assume that
we are sitting out at null infinity (i.e. at t → ∞). Some of the equations we’ve
talked about have nice limits at null infinity. For instance, limCu,t→∞ rtrχ = H1,
some limit. Similarly χ will have limits, and correspondingly for lim r2χ̂ = H3

and lim rχ̂ = H4. [I’m not sure if these fall offs are correct, but they are what
she wrote.]

Using L and L, we can decompose curvature using frame {e1, e2, L, L} (which
is a completed orthonormal frame), and we’ll get curvature decay for some pieces.

On such a surface S, by Codazzi,

divSχ̂ = −χ̂ · ζ 1
2
(∇Strχ+ ζtrχ)− “curvature”− 8πTAL.

There is a corresponding equation for χ̂. We also have a propagation equation
for trχ,

∂strχ = −1

2
trχtrχ− 2µ+ 2|ζ|2

where µ is the mass aspect function.

∂trχ = −1

2
(trχ)2 − |χ̂|2 + 8πTii

We then can write ∂s∇Strχ. We have

µ = K +
1

2
trχtrχ+ divSζ.

The Hawking mass is then

m(t, u) =
r

2

(
1 +

1

16π

∫
St,u

trχtrχ

)
.
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The Gauss-Bonnet theorem then gives∫
St,u

µ = 4π

(
1 +

1

16π

∫
St,u

trχtrχ

)
=

8π

r
m.

Thus we have m → M , the Bondi mass, as t → ∞, i.e. at null infinity. Also,
∂M/∂u is something interesting too.

In general we don’t have the differentiability needed to make all these things
pretty.


