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Today, I want to focus on the rigidity property. This is based on the belief that
a physically valid definition of mass should vanish on Minkowski data. It turns
out that this property is difficult to satisfy.

Rigidity statement of positivity of ADM mass: Take (M, gij, Pij) with gij−δij =
o2(r−α) and Pij = o1(r−α−1) for α > 1/2. Then the ADM mass is ≥ 0 and it is
equal to 0 if and only if (M, gij, Pij) is Minkowski data.

Let the Hawking mass be

mH =

√
|Σ|
16π

(1− 1

16π

∫
Σ

| ~H|2dΣ)

and the Bondi mass be

MB =
1

8π

∫
Σ

H0 dΣ− 1

8π

∫
Σ

| ~H|dΣ.

Rigidity: [Rigidity means that the quasi-local mass of a slice in Minkowski
space should be zero.] We consider any [spacelike] Σ ∈ R3,1. We have that if
Σ ∈ R3, then the Bondi mass is zero, MB = 0. However, mH is negative unless
Σ is a round sphere! If Σ ∈ C, a light cone in R3,1, then mH = 0, but M > 0
unless Σ is again a round sphere.

Recall that H0 is the mean curvature of the isometric embedding of Σ into R3,
i.e. we are taking R3 as our reference space and comparing the two. To anchor
the rigidity property, it is thus natural to consider R3,1 as the reference space.

We will revisit the Hamilton-Jacobi method of deriving quasi-local mass. By
Brown-York, Hawking-Horowitz: Apply Hamilton-Jacobi analysis of the Einstein-
Hilbert functional to the time history of a bounded spacelike region. See figure
1. We obtain a surface Hamiltonian as a 2-integral on the terminal surface.

The surface Hamiltonian is: Let Σ be a spacelike 2-surface in a spacetime N .
Suppose Σ = ∂Ω, where Ω is a spacelike region. See figure 2. Take uµ to be the
future timelike unit normal of Ω and vµ to be the outward spacelike unit normal
of Σ = ∂Ω. Let tµ be a future timelike unit vector field along Σ. This plays the
role of an observer. We can decompose tµ = Nuµ +Nµ where N is the lapse and
Nµ is the shift vector. Then the Hamiltonian is

H(tµ, uµ) = − 1

8π

∫
Σ

(Nk −Nµπµνv
ν)dΣ.

1



2 MU-TAO WANG

Here, k is the mean curvature of Σ as ∂Ω in the direction of vµ. Also, πµν is the
conjugate momentum of Ω. In fact, the definition does not depend on Ω, but
only on the frame {uµ, vµ} along with Σ.

Recipe: Choose a reference space and a reference isometric embedding. See
fig 3. Then the quasi-local energy is just defined to be the physical surface
Hamiltonian H(tµ, uµ) minus the reference surface Hamiltonian H(tµ0 , u

µ
0).

Question: How do we choose the reference space and (tµ0 , u
µ
0) along Σ in the

reference space?
Brown-York and L-Y both used R3 as the reference space. Brown-York’s choice

is gauge dependent, so we need to choose a particular uµ. We then take tµ = uµ.
This leads to the Brown-York mass. For L-Y, they chose uµ to be the future
timelike direction that is orthogonal to ~H. They call this the binormal direction.
We then take tµ = uµ again.

Suppose we fix an isometric embedding X : Σ → R3,1. Let tµ0 be a future
timelike unit translating Killing field. Take uµ0 to be in the direction of the
normal part of tµ0 . Consider

H(tµ0 , u
µ
0) =

1

8π

∫
Σ̂

k̂dΣ̂.

See figure 4. Here k̂ is the mean curvature of Σ̂. This is a conservation law.
Suppose Nµ, the shift vector, is tangent to Σ. This implies that tµ0 [is tangent

to? perpendicular?] to the timelike hypersurface C. Thus

H(tµ0 , u
µ
0) =

1

8π

∫
Σ

πCµνt
µ
0u

ν
0

where πCµν is the conjugate momentum of C. We have ∇ν(πCµνt
µ
0) = 0 on C. This

is how we get the previous paragraph’s formula for H.
Proposal of W-Yau (2009): Take Σ ⊂ N in a physical spacetime. Suppose

an isometric embedding X : Σ ∈↪→ R3,1 and a tµ0 , a translating Killing field are
given. See figure 5. We need a (tµ, uµ) along the physical surface to define the
physical surface Hamiltonian.

Canonical gauge: We claim that if ~H of Σ ⊂ N is spacelike, then there exits a
unique (tµ, uµ) such that

(1) The expansion of Σ ⊂ N along tµ equals the expansion of Σ ⊂ R3,1 along
tµ0 , i.e. the area change along both tµ and tµ0 are the same.

(2) The lapse and shift vector of tµ and tµ0 along uµ and uµ0 , respectively, are
the same.

Define E(Σ, X, tµ0) := H(tµ, uµ)−H(tµ0 , u
µ
0), where Σ ⊂ N .

Both mH and MB can be expressed in terms of the induced metric and the
mean curvature vector | ~H|. This new expression can be expressed in terms of the

induced metric, ~H and τ = −ηµνXµtν0, where η is the flat metric and X is the

position vector of the embedding. But the direction of ~H is also used. There is a
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connection one form, αH , that is determined by the mean curvature vector. ~H is
a normal vector. Consider the normal bundle in Figure 6. If reflect ~H along the
incoming light cone we get ~J . If ~H is inward spacelike, then ~J is future timelike.

Then αH(V ) = 〈∇V
~J

| ~H|
,
~H

| ~H|
〉, which is the torsion in the binormal direction.

We can prove the positivity of E(Σ, X, tµ0) when ~H is spacelike and τ satisfies a
convexity property. Why do we expect the τ? We have 1 degree of freedom from
embedding because of dimension. τ is then something like an observer. Thus,
overall E is more like an energy tensor/vector, and so we define the quasi-local
mass to be

inf
(x,tµ0 )

E(Σ, X, tµ0)

This satisfies the rigidity property. The Euler-Lagrange equation for the quasi-
local energy turns out to be a fourth order non-linear elliptic equation of τ . We
call this the optimal embedding equation. We use the energy to find the “best
matched” space in terms of minimizing the energy for Σ in R3,1.

Properties:

(1) Asymptotics for large and small spheres.
(2) Optimal embedding equation can be solved perturbatively in both cases.
(3) Minimizing properties of critical points near large and small sphere data

(Miao-Tam)

Some applications (Chen-W-Yau)

(1) Invariant mass in GR
(2) Quasi-local conserved quantities

Question: (Classical version by Chrusciel 1988): Suppose M1 and M2 are AF
initial data sets of order α > 1/2. If M1 and M2 are in the same AF spacetime,
do we have ADM(M1) = ADM(M2)? (In same end, etc. of course)

Chrusciel proved this for stationary spacetimes. Recall that there is a flat slice
in Schwarzschild with induced metric that is flat and 2nd fundamental form

√
2mr−3/2(−1

2
dr2 + r2dΩ2).

This slice is defined by t = f(r) where f ′(r) =
√

2m/r/(1 − 2m/r). Recall the
definition of the ADM mass,

ADM = lim
r→∞

1

16π

∫
Σr

(gij,j − gjj,i)vi dΣr

The mass of this slice is 0 [since the metric is flat]. Does the notion of mass still
make sense? However, this slice does not satisfy the AF assumption since it is
the borderline case, i.e. Pij ≈ r−3/2. However, the limit of this quasi-local mass
along large surfaces approaches the correct mass.
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For initial data sets that violate α > 1
2
, does there exist a formula of to-

tal mass depending on (gij, Pij) that gives the same mass for hypersurfaces in
Schwarzschild spacetime?

Question: (Chrusciel 1988): Can you construct a total mass for initial data
sets in terms of (gij, Pij) such that if M1 and M2 are in the spacetime, that they
have the same mass?

We check this on a dynamical spacetime. The model is the one constructed by
Christodoulou and Klainerman in nonlinear stability of Minkowski space. In this
case, we again have (t, r, u1, u2). Look at hypersurfaces give by t = f(r, u1, u2).
If |f | < Cr where C is a constant, with 0 < C < 1, then the limit of the quasi-
local mass as we go to ∞ is always the same for these slices. We only make this
assumption on f to assure that the slice is a timelike hypersurface.

If f = t+u (i.e. it defines null hypersurfaces), for a constant u, we recover the
Bondi mass loss formula.

We can check that for AF initial data sets with α > 1/2, the ADM mass is the
same as the total mass that is defined by this quasi-local mass.


