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GRAVITATIONAL RADIATION - A GEOMETRIC-ANALYTIC
APPROACH

LYDIA BIERI

“Gravitational Waves” slide: See figure 1.

See figure 2: For a laser interferometer, the masses mq, my are displaced with
respect to mg as the waves pass through. These are “instantaneous displacement.”
There is also a permanent displacement, which is about 2 orders of magnitude
smaller, as shown by Christodoulou, when the fully nonlinear aspects of the
equations are considered.

“The (t,u) foliations” slide: See figure 3.

Next slide: 7 = /1 + u?.

“Important geometric properties” slide: We also have shears y and x.

“Method as introduced by” slide : For a null fluid, 7% = N2Y*Y7,

“Permanent displacement formula” slide: A o over a differential operator means
the derivative is at the sphere at infinity.

End: We don’t know what happens if the masses of the neutrinos are non-zero,
which would imply they aren’t traveling at the speed of light.

There is a memory effect in just pure Maxwell-Klein-Gordon (in special rela-
tivity).
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Gravitational Radiation:
A Geometric-Analytic Approach

e Geometries of Physical Spacetimes

e Geometry of Solutions to Einstein Vacuum Equations

and Einstein Equations Coupled to other Fields

e Investigating Spacetimes at Null Infinity

e Observing Gravitational Waves

e New Results on Neutrino Radiation



Spacetimes
We consider

Spacetimes (M, g), where M a 4-dimensional manifold with
Lorentzian metric g solving Einstein equations:

1
G"uy = R'uy — 5 guy R = 2 Tuy , (1)

where

G, is the Einstein tensor,

R, is the Ricci curvature tensor,

R the scalar curvature tensor,

g the metric tensor and

T, denotes the energy-momentum tensor.

Definition. A Lorentzian metric g is a continuous assign-
ment of a non-degenerate quadratic form g,, of index 1, in
T,M at eachp € M.



For parts of the discussion we concentrate on the Einstein-

Vacuum equations.

Solutions of the Einstein-Vacuum (EV) equations:

R, = 0. (2)

Spacetimes (M, g), where M is a four-dimensional, oriented,
differentiable manifold and g is a Lorentzian metric obeying

(2).



Depending on the matter and energy present
= specify corresponding equations.

Construct spacetime in an evolution problem of the Einstein

equations.

An initial data set consists of

a 3-dimensional manifold H,

e a2 complete Riemannian metric g,

e 2 symmetric 2-tensor k,

e and a well specified set of initial conditions corresponding
to the matter-fields.

These have to satisfy the constraint equations.

A Cauchy development of an initial data set is

e a globally hyperbolic spacetime (M, g) verifying the Einstein
equations

e and an imbedding i :— M such that i.(g) and i.(k) are the
first and second fundamental forms of «(H) in M.



Consider asymptotically flat initial data sets:

e outside a sufficiently large compact set K, H\K is diffeo-

morphic to the complement of a closed ball in R3

e and admits a system of coordinates in which
g — %;; and k — O fast enough.



Different Situations

In [CK] , [Z]: strongly asymptotically flat initial data set
(H,g,k), where g and k are sufficiently smooth and there
exists a coordinate system (a!,22,23) defined in a neigh-
bourhood of infinity such that,

as r = (3.7, (2)?)z — oo

g; = (1 + &) 8i; + o4 (r73) (3)

kij = o3 (r2) , (4)

where M denotes the mass.

In [B]: Asymptotically flat initial data (Ho,g,k), where g
and k are sufficiently smooth and for which there exists a
coordinate system (z!,22,23) in a neighbourhood of infinity
such that with r = (322, (29)?)? — oo, it is:

3 = 0y + o3 (r73) (5)
kij = o2 (rz). (6)

= Can compute gravitational radiation for the cases
[CK], [Z], but not for [B].
Decay!



Evolution equations of a maximal foliation:
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Constraint equations of a maximal foliation:

trk = O
Vikiy = 0
R = [k

Lapse equation of a maximal foliation:

AP — [k[?P =0



Gravitational Waves

What is a gravitational wave?

= Fluctuation of curvature of the spacetime
propagating as a wave.

Gravitational waves: Localized disturbances in the geometry
propagate at the speed of light.

Geometric Analysis < Physics



Observation of Gravitational Waves

'"We -the observers- are sitting at null infinity.’

= Understand geometry of spacetimes at null infinity:
Investigate and compute null asymptotics of solutions of
the Einstein equations, null asymptotic behavior of curva-
ture components and geometric quantities.

= Understand gravitational radiation

= Detect gravitational waves

e Nonlinear memory effect (D. Christodoulou, 1991) in
regime of Einstein vacuum equations (with large data)

e Nonlinear memory effect in regime of Einstein-Maxwell
equations (L. Bieri, P. Chen, S.-T. Yau, 2010)

¢ Nonlinear memory effect and neutrino radiation
(L. Bieri, D. Garfinkle, recent)



Christodoulou-Klainerman result
"The global nonlinear stability of the Minkowski space’
([CK], 1993)

= describes precisely asymptotic behavior at null and
timelike infinity.

This result established that under 'suitable’ assumptions on
the initial data, i.e. under a smallness assumption, the initial
data vield a geodesically complete spacetime.

However, as we want to observe 'from null infinity’, we need
'only’ investigate the null asymptotics. The results for null

infinity are independent from the smallness assumption.

= Can have large data.



The (t,u) foliations of the spacetime define a codimension
2 foliation by 2-surfaces

Stu — Ht M CU7 (7)

Y

the intersection between H; (foliation by t) and a wu-null-
hypersurface C, (foliation by u).

Null pairs consisting of 2 future-directed null vectors e4 and
ez orthogonal to S;, with e4 tangent to C, and

<e4,e3> = — 2. (8)

A null pair together with an orthonormal frame e, e> on S;
forms a null frame.

The null decomposition of a tensor relative to a null frame
e4, €3, €2, e1 IS obtained by taking contractions with the vec-
torfields ey, es.



Let L and L be the outgoing, respectively incoming, null
normals to the surface S;, = H; N Cy, for which the compo-
nent along 7' is equal to T'. Also, the integral curves of L
are the null geodesic generators of the null hypersurfaces C,

parametrized by t.

Then T is expressed as

1
T =3 (L + L) . (9)
The generator S of scalings is defined to be:
1
SZE(QL—FUL)- (10)
And the generator K of inverted time translations is defined
as:
1 2 2
KZE(QL—I—uL). (11)
Then the vectorfield K = K + T reads as:
_ 1
K=5(71L+TEL). (12)
We denote
u = u-+2r

)
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In [CK], D. Christodoulou and S. Klainerman achieve

e Proof of existence and uniqueness of solutions,
global result

e Asymptotic behaviour: Precise description

Null decomposition of the Riemann curvature tensor of
an E-V spacetime:

Rasps = aas (13)
RA334 (14)
R3434 (15)
"R3434 (16)
RA43a (17)
Raspa (18)

The null components have the
decay properties:

a = 0@t
Razza = O (r? T__g)
Rasza = O (r73)
*Rasza = O (r>71_%)

Raaza, Raapas = o (r72)



From the main theorem in [CK], the authors derive the
limiting behavior of the curvature components along the
null hypersurfaces Cy as t — .

lim ra = A(u)
C,,t—oo

with A being a symmetric trace-free 2-covariant tensorfield
on S2.

Correspondingly, the components
R334, R3434, *R3434 = tend to limits on SQ,

all of which are depending on u.

The components Ra434, Raaps = tend to zero.

The limits are shown to have appropriate decay as | u |— oo:
A = o(Jul?)

The remaining limits have less decay.



Important Geometric Quantities in the Measurement
of QGravitational Waves

Fundamental form y of S relative to C:

x(X,Y) = g(DxL,Y)

for any pair of vectors X,Y € 71,5 and L generating vector-
field of C.

Also
x(X,Y) = g(DxL,Y)

Shear x Traceless part of y.

Torsion (.
¢ (NX) = g (Z, X)

for all X in T,M, where Il denotes the projection to 7,5 with

p €S and

1
Z = — = DrL
> LY

where L is the generator of the interior cone.



Method as introduced by D. Christodoulou and S. Klainer-
man in [CK]: Treating propagation equations along the
cones (), coupled to elliptic systems on the surfaces S; ..

Further developments in Zipser's proof [Z] and in Bieri's
proof [B].

In [Z] = electromagnetic field is present

In [B] = details different and borderline cases

In Bieri, Garfinkle [BG] = neutrino radiation via null fluid

Propagation equation for try:
For Einstein-Null-Fluid (ENF):

dtry
ds

1 ~
=5 (trx)” = [RI° = 87A%. (19)

For Einstein-Maxwell (EM):

dtry
ds

1 -
+§(t7“x)2 = —|XI° = |la(®)|?

The Gauss equation reads

AN

1 1 . . .
K = _ZtTXt"X‘I‘ §X X — “W'" 4 contributions from T’

Here “W'" denotes a component of the Weyl curvature other

than «.



Define the function i as

1
p= —dip ¢ + 5)2 -X — “W" 4+ contributions from T

The latter, with the help of the Gauss curvature K, can be

written as

p=—dip { + K + %trxtrx. (20)

The null Codazzi and conjugate null Codazzi equations read

1
dipx = -—-x-¢+ §(Y7t7“x+ctrx) — W

+ contributions from T

1
G = X-C+S(Virx—ctr) + W’

-+ contributions from T



Null Asymptotics = Gravitational Radiation

Limit for the shear y

im %% = X(u)

C,t—o0

> symmetric trace-free 2-covariant tensorfield on S? depend-

ing on u.
Moreover,
lim r»try = — Im ritry = 2
C,t—o0 C,t—o0 -
lim rx = =(u)
C,t—oc0 —

= symmetric trace-free 2-covariant tensorfield on S2 depend-

ing on wu.

= =o(lul3) as |u|— o



Investigate Null Geometry

Null hypersurfaces => asymptotics as ¢t — oo

Geometry and Analysis = Physics of Radiation

Quantities that eventually play the leading roles:

shears, torsion,
particular curvature component(s,)
particular component(s) of energy-momentum tensor.

W component of a second fundamental form or torsion,
$® component of the Weyl curvature,
T component of the energy-momentum tensor.

WNX = " + “\U®\U” —|— “W ®\|}” _|_ “p + v

WU 4 URWT 4+ Y QW 4 YT 4 T

.1
Y N1+ 5”977



In the situation when an electromagnetic field is present:

= Multiply the first equation by r2 and the second by r:

Y y(r?x) = —rij+0@™)

Y () = —ra+0(r)

Take the limits on C, as t — oo:



Hawking mass m(t,u) contained in a surface S;, defined

as:

m(t,u) = g(l + 1 /S trx t@)

167

t,u

Bondi mass M (u) contained in C, defined as:

M(u) = tILngom(t,u)

Investigating

and

and taking corresponding limits.

(21)

(22)



For physically interesting spacetimes

m(t,u) = M(w) + 0@ 1)

Bondi mass loss formulas

[CK] derived and used in [C]:

oM 1

u =17 dpy

87'(' S2

[Z] derived used in [BCY]:

0 1 2, 1 2
—M = — = —|A dps-
om0 = [ (IZP+ 510 ) an,

[BG] derived and used:

0 _ 1 — 2 *



[C] introduced

P o= é /OO =) P du (23)

—00

with F /47 the total energy radiated to infinity in a given
direction, per unit solid angle.

= Derived nonlinear memory effect
of gravitational waves
[Christodoulou]



[BCY] introduced
1 [T/ _ o1 2
F=_ ISP +S1ArP) du . (24)

= Derived nonlinear electromagnetic Christodoulou
memory effect
[Bieri-Chen-Yau]

[BG] introduced

1 [T,/ _ .
F=§/OO (|:|2 —|—47TT@) du . (25)

= Derived nonlinear Christodoulou memory effect for
neutrino radiation via null fluid
[Bieri-Garfinkle]



With this energy consider equation
dip (=t — 7)) =V
where f is a solution of
Af=2F-F), f=0
Y ,dip, A on S2. Integrability condition of the last two equa-

tions is that F is L2?-orthogonal to the first eigenspace of A

F(l) - O



Derive

s+ -y = 1 /OO =(u) du (26)

— 00

and

u

>(u) = X7 + % / =(u) du
(u) — X~
related to

iInstantaneous displacements of faraway test masses
w.r.t. reference test mass, relative to which they are

initially at rest.

>t _3-
yields

permanent displacement of the test masses.
Non-linear effect.

An effect observable in principle.



Investigate

>(u) —X~ and It -3~
for physically relevant spacetimes.
1. Keep general T;;.

2. Investigate EV, EM, ENF.

3. Geometry of resulting spacetimes
= QGravitational radiation in astrophysical scenarios.



Permanent Displacement Formula

Christodoulou’s Memory Effect = governed by the
permanent displacement formula 1t — ¥ .

Theorem 1. Let Z1(-) = liMy_oo (1, ) and Z=(-) = limy_ oo Z(u, )
In the following, let |S|2 denote a component of the energy-
momentum tensor with “right” decay. (S can be a tensor

or a function, depending on the fields. ) Moreover, let “T"

denote lower order components of the energy-momentum
tensor, where these can be quadratics of the fields. Let

FO= [ (120 P e | s P)ae . @)
Moreover, let ® be the solution with & = 0 on S? of the
equation

Ad=F_F
Then ¥t — X~ is given by the following equation on S?:
dfﬁ) (=T —7) =§5 > . (28)
Proof - Sketch: We have

S(u) =3 — /u =(u)du

— OO

and

>ty = —/ =(u)du

—0o



Consider the normalized null Codazzi equation

N 1 R 1
(dZ/U X)A — EW AtTXx + eBXAB — EEAtTX —

—B(W)a+ "t" (29)

Multiply equation (29) by r3 and take the limit as ¢t — oo on
Cu.

Let
E= Ilim (r?
C’u,|t—>oo (T’ €>
We obtain
div * =Y H+E
H denotes
2
H= Ilim (r2(trx'——)> :
C,,t—o0 r

It can be shown that
OH .

—=0.
ou

= Focus on FE.



Hodge system for e

3 .
dive = —VN(S—Et’rO(S—I—ﬁ-H
—2(a"'Va) etct" —cl|s|?
chrl e = o(W)+0A7
We work with the following
AV = r[ij|]?—c|s|
AV = —ra A7 T P)
r2q—1
+ 4 (a$4|s|2 —a$4|3|2)

whereas in the EV case treated in [CK] it is

AV = r|q]?
AV = —ra ')A 7 2 =] 7 ]?)
We derive
dihe = p—p+xXx-G—x-0+r 1AV —r2Vyy
—r eIV + Lot (30)

chrle = o(W)+0A7 (31)



Continue from

dipe = p—p+R-G—X-0+r AV —r 2V
—r3a IV 4 Lo.t. (30)
chrle = o(W)+0A7 (31)

We compute the following limits in the new situation.

im W= lim W =¥
C, t—o0 C,,t—o0
im rVyWw = Q(u, ) lim PV = Q' (u,-).
C,t—oo C,t—o0

Multiply equations (30) and (31) by 3 and take the limits

on Cy, as t — oo. This yields:

cgcz)irl E = Q4+xXA= (32)
dih E = P-P4+5x.=-%.=
FAV-V_Q . (33)

Investigate limits as u —+ +o00 and u — —oo.

=
E tends to a limit ET as u« — 400 and to E— as u — —oc.



Have

c;irl E = Q4+xXAZ= (32)
dih E = P-P4+5.=-%.=
FAV-W_Q . (33)

Obtain
cyrl (ET —E7) = 0

Now, compute dip (ET — E7).

Have to consider the corresponding limits for the terms in-
volving ¥ and W/, that is also <2'.

We use the fact that

D, s|?P=—trx | s |? +l.o.t. (34)

Using (34), (30), we deduce formulas for ¥, ¥’ Q, Q' by
computing the limits in (33).



Evaluating the difference of the limits as

u — +oo and u —+ —oo in (33), the contribution of Ai U
W’ and ' comes only from terms in 2. We find that <’
tends to limits Q'7(.) and () ast — oo and t — —oo,

respectively. Thus, we conclude

+o00
OO0 = [ (12@)P-TEwIP

— 00

+Cl ‘ S(ua) |2 _Cl| S(ua) |2 )du .

Finally, we obtain

ap (BF—E) = -t 40"
“+o0
= / (= 1=, [?+[=(u,-) [?(35)

— 0

—C1 ‘ S(U’)) ‘2 +Cl‘ S(’U,,) |2 )d’U,



We know that
(Ef—-E) =V @ (36)

with & being the solution of vanishing mean of

AP = -—QT+Q~ ons?

Collect the results :

dib ==Y H+E

dz‘c}b (ET—E7) = —QT4+Q~
+o0
= [ (-1 P =GP

— o0

—c1 | S(u,) [ +er] S(u, ) [ )du

We conclude

dz’jb (T - )Y=Et-E . (37)

This proves theorem 1.



Einstein-Maxwell Case

What happens in the presence of an electromagnetic field?

Einstein-Maxwell equations:

1
G =Ry —  gw R =87 Ty, (38)

setting G=c=1, u,v=20,1,2,3, where

G, is the Einstein tensor,

R, is the Ricci curvature tensor,

R the scalar curvature tensor,

g the metric tensor and

T, denotes the stress-energy tensor of the electromag-
netic field.

In particular, F denoting the electromagnetic field, the
tensor T,z reads:

1 1 i
Top = S—W(FapFﬂp — ZgaﬁFpan ) (39)

F' is an antisymmetric covariant 2-tensor.

T, is trace-free. = Einstein equations (38) become

Rluy — 87TT,u1/ . (40)



The Einstein-Maxwell (EM) equations are given by

R,Lu/ — 87TT,u1/ (41)
D°F,; = O (42)
D® *F,5 = O. (43)

Whereas in the EV case, the Weyl tensor satisfies the ho-
mogeneous equations

DaWa575 =0 s

in the EM case the corresponding equations are inhomoge-

neous

o 1
D Wa575 = §(D7R55 — D5R5’Y) . (44)



Zipser [Z] works with the same conditions as [CK] on the
metric, second fundamental form and curvature,
in addition she imposes a decay condition on the electro-

magnetic field, namely

Flg = o3 <r_§> : (45)

The null components of the electromagnetic field are

Faz=a(F)a Fyq
(46)
F3q Fio.

The estimates in [Z] vield the decay behavior:

a(F) = O (@7t |u™)
Fi2,F3a. = O (r72 |u|7?)
Faa = o (7“_2)

a(F) , Fio, F34 have limits at null infinity.

Guiding term

=a(F)



Limit

lim ra(F) = Ap(u,-)

C,,t—o0

Ar is a 1-form on S?2 depending on u with decay property:

[Ap(u, )| < (14 Juf)73?

Pointwise norms | | of the tensors on S? relate to metric 5,
being the limit of the induced metrics on S;, Yu as t — oo .



Einstein-Null-Fluid and Neutrino Radiation

Describe burst of neutrinos as a null fluid:

Energy-momentum tensor has the form
Tij = N?kk; (47)

k a null vector
N a positive scalar function.

Notation: in what follows:
Denote component T(X,Y) = T;; X'Y7 of the energy-momentum
tensor by Txy for any vectors X,Y on M.

The twice contracted Bianchi identities imply that
D’G;; =0 . (48)

Thus
D’T;; = 0. (49)

The Einstein equations (38) for a null fluid reduce to:

Ry; = 8xT}; (50)



Typical sources of such neutrino bursts:

core-collapse supernovae
and
binary neutron star mergers.

Initially “at” burst: Neutrinos fly in all directions.

Later: Neutrinos follow the outgoing null geodesics
generated by L.

The vector k will be of the form
k=alL+bL+V

with V denoting a vector tangent to S.

Can be shown that :

along C, as t — oo, L and V decay and

k finally becomes L.



Let £ be a null geodesic, that is,

k‘Vok = Vik =0
k%kq =0 .

Excursion to Minkowski spacetime

In Minkowski space there exist conformal Killing fields X,
that is,

v(chrb) — ¢gab
for some scalar ¢, that is
(Lxg) = ¢g .
Then it follows that
KV (Xk*) =0

and consequently that for each geodesic there exists a con-
stant ¢ such that k%X, = c.



Back to Lorentzian spacetime

A Lorentzian manifold in general does not admit conformal
Killing fields.
= Above equations do not hold.

However,

Asymptotic flathess = guarantees
the existence of almost- and quasi-conformal Killing fields.

This means

Deformation tensors are suitably small and tend to zero
as t — oo in a suitable way.

Then
the afore-mentioned equations ‘hold in an asymptotic

sense’.



Recall the vectorfields

T =-(L+1L),

1
2

K = - (u®L + v* L)

N N |+~

Deformation tensor for

(T)ﬂ'aﬁ — (ETg)ozﬁ' (51)

Deformation tensor for K

B rros = (LKG)as. (52)

For a S-tangential vectorfield V it is

(k) (V,V) = u*(Lrg)(V,V) + u(Lrg)(V V)

= VAWV ulxap + VAVPPxap -



In [BG] we derive

TM = O(T_QT__3)

Other components of T are of lower order.



Gravitational Wave Experiments

How do these results relate to experiment?

In his derivation of the nonlinear memory effect in the EV
case, Christodoulou shows how the theoretical result on
>+t — 3~ leads to an effect measurable by a laser inter-
ferometer gravitational-wave detector.

This effect shows as a permanent displacement of the
test masses of the detector after a wave train has passed.

Here discuss:
Permanent displacement of the test masses in the
neutrino (null fluid) case:

Null fluid comes into the formula 1+ — > .

Instantaneous displacement of the test masses in the
ENF case: unchanged.



3 test masses mg, mi;, mo suspended by equal length pen-

dulums.

mg:. reference mass.

Measure by laser interferometry the distance of m; and ms

from the reference mass my

The beam splitter is at mg.

Motion of masses on the horizontal plane: considered free
for timelike scales much shorter than the period of the pen-

dulums.

Any difference in the light travel times between mg and
m1 and mo, respectively, results in a difference of phase of
the laser light at mg.

mo, mi1, m2 move along geodesics v, 71, 72 in spacetime.
T unit future-directed tangent vectorfield of ~g

t. arc length along ~o.

Let H; for each t be the spacelike, geodesic hyperplane
through ~o(t) orthogonal to T.



Consider the orthonormal frame field (7T, F1, E>, E3) along
~o, Where (FE1,E», E3) is an orthonormal frame for Hy at
v0(0), parallely propagated along ~o.

= at each t, (F1,E»,E3) is an orthonormal frame for H,
at vo(2).

Assign to a point p in spacetime, lying in a neighbourhood
of ~g, the cylindrical normal coordinates (¢, zt, 22, 23), based
on 7o, if p € H; and p = expX with X =), D= T, Ht.

In these coordinates we have

Guw — Mw = O (R d2) 3 (53)

where 7, is the Minkowski metric and:

d =]X|= ‘/Z (2)° (54)

is the distance of p from the center ~q(¢t) on H;.

Let 7 be the time scale in which the curvature varies sig-
nificantly.



Then, the displacements of the masses from their initial
positions will be

O(RTQ)
Assume that

d
— << 1. (55)

T

The speed of light can be taken to be 1.

Thus, differences in phase of the laser light will, un-
der this assumption, accurately reflect differences in
distance of m; and m»> from mg.

The same assumption (55) allows us to replace the geodesic

equation for v; and ~2 by the Jacobi equation (geodesic
deviation from ~p).

= — Ripr o' (56)

with

Rinir = R (Ei, T, B, T) . (57)



Now, assume for simplicity that the source is in the Es-

direction.

Investigate the formula (56) for the Einstein-Null-Fluid
(ENF) situation:

Non-charged test masses: formula (56) stays the same, but
the null fluid comes in.

However, it enters at lower order.

It is:
1
Raﬁ’y(S — Wozﬁ’y5 _l_ E(goz'yRﬁé + 955Roz'y — gﬁ’yRa(S - goz5Rﬁ’y)
1
_6 (gowgﬂé - gaégﬁW) R . (58)
=
1
Rroio = Whiowo + E(gszoo + gooRii — goiRko — groRor) (59)

The ENF equations tell us:

Roo = 87Tho



and in particular, we have

Roo = 8nToo = 2n(Trr — Trr) (60)

we can investigate the components of the Ricci curvature
on the right hand side of (59).
Roo includes the term Tp,. Worst decay behavior.

Consider L =T — FE3, L =T + Es.

The leading components of the curvature are

arp(W) = R (Ea L, Eg, L) (61)
wisw) = 22y (62)

The leading components of the null fluid are

T*
T, = % + o0 (r72) . (63)



Denote the kth Cartesian coordinate of the mass my for

__ k
A=1,2 by x (A)"

Then the Jacobi equation becomes

d? z* 1
A _ _
72() = g7 Awmag + 00
that is
2 ,..3
d T — 0
d t2
d? x4 1
C —_ _
—d tQ() = — Z'f’ 1AAB CUB(D) —I_ O(?“ 2)

From the Jacobi equation = see that the null fluid enters
on the right hand side at order (r=2) only.

= The null fluid does not contribute at leading order
to the deviation measured by the Jacobi equation.

= At leading order, results for the Einstein vacuum case

apply.



Obtain: In the vertical direction there is no acceleration to
leading order (r—1).

Initially m; and m» are at rest at equal distance dop and at
right angles from mg. This implies the following initial con-

ditions, as t — —oo:
3 — -3 — . —
Py =0, Ty =0, 2ty =dod} , &%, =0.

The right hand side being very small, one can substitute
the initial values on the right hand side. Then the motion

is confined to the horizontal plane. One has to leading order:

LA

T (B) = — ’I"_l do AAB . (64)

One obtains

: 1 _ t
oy ) = g dort [ A @du.  (65)



In view of equation

o= __ 1 : —_
5. = —7Aand limp,.==0
we obtain
t
- / Aap (u) du = = (¢) (66)

and

A1) = 2=, 1) (67)

T (B) — . At

As = — 0 for u — oo, the test masses return to rest after
the passage of the gravitational wave.

Taking into account
o> __ —_

Ou -

and integrating again:

Py @ = — (B @ - ). (69)



The limit t = oo is taken and it follows that the test masses
experience permanent displacements.

Thus
>+ 3>

iS equivalent to an overall displacement of the test masses:

do _

The right hand side of (69) includes terms from the
null fluid at highest order as given in our theorem 1.

Recall also: total energy % radiated to infinity in a

given direction per unit solid angle:

oo
F= / (1= P +47T5, ) du



Derive

s+ -y = 1 /OO =(u) du (70)

— 00

and

u

>(u) = X7 + % / =(u) du
(u) — X~
related to

iInstantaneous displacements of faraway test masses
w.r.t. reference test mass, relative to which they are

initially at rest.

>t _3-
yields

permanent displacement of the test masses.
Non-linear effect.

An effect observable in principle.



Now: Denote the direction of observation by € € S2 C R3,

Let X, Y be arbitrary vectors lying in the tangent plane
at &, i.e. in TgS2,

Let Il be the projection to the plane through the origin or-
thogonal to &.

< , > denotes the inner product.

The solution at the observation point £ is expressed as
an integral over S? of a contribution from each ¢ € S2:

(=t - =) (X, V)=

1 <X, & ><Y, ¢ > -2 <X, Y > N¢ |2

5 g,esz(F_F[l])(g) 1- < &¢ >

d/&; &)

Subscript [1] denotes the projection onto the sum of the 0"
(I=0) and 1% (I = 1) eigenspaces of A . Multiplicity of the
[th eigenspace 21 + 1, eigenvalue (I + 1).



Recall

_1 o = 2
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400
F= é/ (1= |” +4nN{?) du  (ENF)

and

1 [T
z+—z—=—§/ =(w) du .

— 00

>+ — ¥~ vyields permanent displacement of test masses.

Non-linear effect, i.e. nonlinear memory effect.

u

>(u) = X7 + % / =(u) du

— 00

Y (u) — X~ related to instantaneous displacements of

faraway test masses w.r.t. reference test mass, relative to

which they are initially at rest.



is dimensionless.

>~ has dimensions of length.

F' has dimensions of length.

In the example of a binary coalescence

=> The solution formula for (+ — >~~) from above

e Has a nonlinear contribution from F

and

e A linear contribution from

(P—Py)T —(P—Py)”



Linear effect
—> was known for a long time in the slow motion limit
[Ya.B. Zel'dovich, A.G. Polnarev 1974]

Nonlinear effect
=> was found by [D. Christodoulou 1991].

Contribution from electro-magnetic field to nonlinear
effect
=> was found by [L. Bieri, P. Chen, S.-T. Yau 2010
and 2011].

Contribution from neutrino radiation to nonlinear
effect

=> recent result by [L. Bieri, D. Garfinkle 2012 and
2013].



Open Questions

For instance

e Geometry and null asymptotics of other spacetimes?

e What are the patterns in the gravitational radiation for var-
ious astrophysical scenarios? How is the geometry changed?

e What happens, when inserting other fields on the right
hand side of Einstein equations?



