


GRAVITATIONAL RADIATION - A GEOMETRIC-ANALYTIC
APPROACH

LYDIA BIERI

“Gravitational Waves” slide: See figure 1.
See figure 2: For a laser interferometer, the masses m1,m2 are displaced with

respect tom0 as the waves pass through. These are “instantaneous displacement.”
There is also a permanent displacement, which is about 2 orders of magnitude
smaller, as shown by Christodoulou, when the fully nonlinear aspects of the
equations are considered.

“The (t, u) foliations” slide: See figure 3.
Next slide: τ− =

√
1 + u2.

“Important geometric properties” slide: We also have shears χ̂ and χ̂.

“Method as introduced by” slide : For a null fluid, T ij = N2Y iY j.
“Permanent displacement formula” slide: A ◦ over a differential operator means

the derivative is at the sphere at infinity.
End: We don’t know what happens if the masses of the neutrinos are non-zero,

which would imply they aren’t traveling at the speed of light.
There is a memory effect in just pure Maxwell-Klein-Gordon (in special rela-

tivity).
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Gravitational Radiation:

A Geometric-Analytic Approach

• Geometries of Physical Spacetimes

• Geometry of Solutions to Einstein Vacuum Equations

and Einstein Equations Coupled to other Fields

• Investigating Spacetimes at Null Infinity

• Observing Gravitational Waves

• New Results on Neutrino Radiation



Spacetimes

We consider

Spacetimes (M, g), where M a 4-dimensional manifold with

Lorentzian metric g solving Einstein equations:

Gµν := Rµν −
1

2
gµν R = 2 Tµν , (1)

where

Gµν is the Einstein tensor,

Rµν is the Ricci curvature tensor,

R the scalar curvature tensor,

g the metric tensor and

Tµν denotes the energy-momentum tensor.

Definition. A Lorentzian metric g is a continuous assign-

ment of a non-degenerate quadratic form gp, of index 1, in

TpM at each p ∈ M .



For parts of the discussion we concentrate on the Einstein-

Vacuum equations.

Solutions of the Einstein-Vacuum (EV) equations:

Rµν = 0 . (2)

Spacetimes (M, g), where M is a four-dimensional, oriented,

differentiable manifold and g is a Lorentzian metric obeying

(2).



Depending on the matter and energy present

⇒ specify corresponding equations.

Construct spacetime in an evolution problem of the Einstein

equations.

An initial data set consists of

• a 3-dimensional manifold H,

• a complete Riemannian metric ḡ,

• a symmetric 2-tensor k,

• and a well specified set of initial conditions corresponding

to the matter-fields.

These have to satisfy the constraint equations.

A Cauchy development of an initial data set is

• a globally hyperbolic spacetime (M, g) verifying the Einstein

equations

• and an imbedding i :→M such that i∗(ḡ) and i∗(k) are the

first and second fundamental forms of i(H) in M .



Consider asymptotically flat initial data sets:

• outside a sufficiently large compact set K, H\K is diffeo-

morphic to the complement of a closed ball in R3

• and admits a system of coordinates in which

ḡ → δij and k → 0 fast enough.



Different Situations

In [CK] , [Z]: strongly asymptotically flat initial data set

(H, ḡ, k), where ḡ and k are sufficiently smooth and there

exists a coordinate system (x1, x2, x3) defined in a neigh-

bourhood of infinity such that,

as r = (
∑3

i=1(xi)2)
1

2 →∞:

ḡij = (1 +
2M

r
) δij + o4 (r−

3

2 ) (3)

kij = o3 (r−
5

2 ) , (4)

where M denotes the mass.

In [B]: Asymptotically flat initial data (H0, ḡ, k), where ḡ

and k are sufficiently smooth and for which there exists a

coordinate system (x1, x2, x3) in a neighbourhood of infinity

such that with r = (
∑3

i=1(xi)2)
1

2 →∞, it is:

ḡij = δij + o3 (r−
1

2 ) (5)

kij = o2 (r−
3

2 ) . (6)

⇒ Can compute gravitational radiation for the cases

[CK], [Z], but not for [B].

Decay!



Evolution equations of a maximal foliation:

∂ḡij

∂t
= −2Φkij

∂kij

∂t
= −∇i∇jΦ + (Rij − 2kimk

m
j)Φ

Constraint equations of a maximal foliation:

trk = 0

∇i kij = 0

R = | k |2

Lapse equation of a maximal foliation:

4Φ − | k |2 Φ = 0



Gravitational Waves

What is a gravitational wave?

⇒ Fluctuation of curvature of the spacetime

propagating as a wave.

Gravitational waves: Localized disturbances in the geometry

propagate at the speed of light.

Geometric Analysis ⇔ Physics



Observation of Gravitational Waves

’We -the observers- are sitting at null infinity.’

⇒ Understand geometry of spacetimes at null infinity:

Investigate and compute null asymptotics of solutions of

the Einstein equations, null asymptotic behavior of curva-

ture components and geometric quantities.

⇒ Understand gravitational radiation

⇒ Detect gravitational waves

• Nonlinear memory effect (D. Christodoulou, 1991) in

regime of Einstein vacuum equations (with large data)

• Nonlinear memory effect in regime of Einstein-Maxwell

equations (L. Bieri, P. Chen, S.-T. Yau, 2010)

• Nonlinear memory effect and neutrino radiation

(L. Bieri, D. Garfinkle, recent)



Christodoulou-Klainerman result

’The global nonlinear stability of the Minkowski space’

([CK], 1993)

⇒ describes precisely asymptotic behavior at null and

timelike infinity.

This result established that under ’suitable’ assumptions on

the initial data, i.e. under a smallness assumption, the initial

data yield a geodesically complete spacetime.

However, as we want to observe ’from null infinity’, we need

’only’ investigate the null asymptotics. The results for null

infinity are independent from the smallness assumption.

⇒ Can have large data.



The (t, u) foliations of the spacetime define a codimension

2 foliation by 2-surfaces

St,u = Ht ∩ Cu , (7)

the intersection between Ht (foliation by t) and a u-null-

hypersurface Cu (foliation by u).

Null pairs consisting of 2 future-directed null vectors e4 and

e3 orthogonal to St,u with e4 tangent to Cu and〈
e4, e3

〉
= − 2 . (8)

A null pair together with an orthonormal frame e1, e2 on St,u

forms a null frame.

The null decomposition of a tensor relative to a null frame

e4, e3, e2, e1 is obtained by taking contractions with the vec-

torfields e4, e3.



Let L and L be the outgoing, respectively incoming, null

normals to the surface St,u = Ht ∩ Cu, for which the compo-

nent along T is equal to T . Also, the integral curves of L

are the null geodesic generators of the null hypersurfaces Cu

parametrized by t.

Then T is expressed as

T =
1

2

(
L + L

)
. (9)

The generator S of scalings is defined to be:

S =
1

2

(
u L + u L

)
. (10)

And the generator K of inverted time translations is defined

as:

K =
1

2

(
u2 L + u2 L

)
. (11)

Then the vectorfield K̄ = K + T reads as:

K̄ =
1

2

(
τ2

+ L + τ2
− L

)
. (12)

We denote

u = u+ 2r

τ− =
√

1 + u2

τ+ =
√

1 + u2 .



In [CK], D. Christodoulou and S. Klainerman achieve

• Proof of existence and uniqueness of solutions,

global result

• Asymptotic behaviour: Precise description

Null decomposition of the Riemann curvature tensor of

an E-V spacetime:

RA3B3 = αAB (13)

RA334 (14)

R3434 (15)

∗R3434 (16)

RA434 (17)

RA4B4 (18)

The null components have the

decay properties:

α = O (r−1 τ
−5

2

− )

RA334 = O (r−2 τ
−3

2

− )

R3434 = O (r−3)

∗R3434 = O (r−3 τ
−1

2

− )

RA434, RA4B4 = o (r−
7

2 )



From the main theorem in [CK], the authors derive the

limiting behavior of the curvature components along the

null hypersurfaces Cu as t→∞.

lim
Cu,t→∞

rα = A(u)

with A being a symmetric trace-free 2-covariant tensorfield

on S2.

Correspondingly, the components

RA334, R3434, ∗R3434 ⇒ tend to limits on S2,

all of which are depending on u.

The components RA434, RA4B4 ⇒ tend to zero.

The limits are shown to have appropriate decay as | u |→ ∞:

A = o (| u |−
5

2 )

The remaining limits have less decay.



Important Geometric Quantities in the Measurement

of Gravitational Waves

Fundamental form χ of S relative to C:

χ(X,Y ) = g(DXL, Y )

for any pair of vectors X,Y ∈ TpS and L generating vector-

field of C.

Also

χ(X,Y ) = g(DXL, Y )

Shear χ̂ Traceless part of χ.

Torsion ζ.

ζ (ΠX) = g (Z, X)

for all X in TpM , where Π denotes the projection to TpS with

p ∈ S and

Z = −
1

2
DLL

where L is the generator of the interior cone.



Method as introduced by D. Christodoulou and S. Klainer-

man in [CK]: Treating propagation equations along the

cones Cu coupled to elliptic systems on the surfaces St,u.

Further developments in Zipser’s proof [Z] and in Bieri’s

proof [B].

In [Z] ⇒ electromagnetic field is present

In [B] ⇒ details different and borderline cases

In Bieri, Garfinkle [BG]⇒ neutrino radiation via null fluid

Propagation equation for trχ:

For Einstein-Null-Fluid (ENF):

dtrχ

ds
= −

1

2
(trχ)2 − |χ̂|2 − 8πN 2

3 . (19)

For Einstein-Maxwell (EM):

dtrχ

ds
+

1

2
(trχ)2 = − |χ̂|2 − |α (F )|2

The Gauss equation reads

K = −
1

4
trχtrχ+

1

2
χ̂ · χ̂− “W” + contributions from T

Here “W” denotes a component of the Weyl curvature other

than α.



Define the function µ as

µ = −div/ ζ +
1

2
χ̂ · χ̂− “W” + contributions from T

The latter, with the help of the Gauss curvature K, can be

written as

µ = −div/ ζ +K +
1

4
trχtrχ. (20)

The null Codazzi and conjugate null Codazzi equations read

div/ χ̂ = −χ̂ · ζ +
1

2
(∇/ trχ+ ζtrχ)− “W”

+ contributions from T

div/ χ̂ = χ̂ · ζ +
1

2
(∇/ trχ− ζtrχ) + “W”

+ contributions from T



Null Asymptotics ⇒ Gravitational Radiation

Limit for the shear χ̂

lim
Cu,t→∞

r2χ̂ = Σ(u)

Σ symmetric trace-free 2-covariant tensorfield on S2 depend-

ing on u.

Moreover,

lim
Cu,t→∞

r trχ = − lim
Cu,t→∞

r trχ = 2

lim
Cu,t→∞

rχ̂ = Ξ(u)

Ξ symmetric trace-free 2-covariant tensorfield on S2 depend-

ing on u.

Ξ = o (| u |−
3

2 ) as | u | → ∞ .



Investigate Null Geometry

Null hypersurfaces => asymptotics as t→∞

Geometry and Analysis ⇒ Physics of Radiation

Quantities that eventually play the leading roles:

shears, torsion,

particular curvature component(s,)

particular component(s) of energy-momentum tensor.

Ψ component of a second fundamental form or torsion,

Φ component of the Weyl curvature,

T component of the energy-momentum tensor.

∇/ N χ̂ = “ΨΨ” + “Ψ⊗̂Ψ” + “∇/ ⊗̂Ψ” + “Φ” + “T”

∇/ N η̂ +
1

2
trθη̂ = “ΨΨ” + “Ψ⊗̂Ψ” + “∇/ ⊗̂Ψ” + “Φ” + “T”



In the situation when an electromagnetic field is present:

⇒ Multiply the first equation by r2 and the second by r:

∇/ N(r2χ̂) = −rη̂ +O(r−1)

∇/ N(rη̂) = −rα+O(r−1)

Take the limits on Cu as t→∞:

∂

∂u
Σ = −Ξ

∂

∂u
Ξ = −

1

4
AW



Hawking mass m(t, u) contained in a surface St,u defined

as:

m(t, u) =
r

2

(
1 +

1

16π

∫
St,u

trχ trχ
)

(21)

Bondi mass M(u) contained in Cu defined as:

M(u) = lim
t→∞

m(t, u) (22)

Investigating
∂

∂t
m(t, u)

and
∂

∂u
m(t, u)

and taking corresponding limits.



For physically interesting spacetimes

m(t, u) = M(u) +O(r−1)

Bondi mass loss formulas

[CK] derived and used in [C]:

∂M

∂u
=

1

8π

∫
S2

| Ξ |2 dµγS2

[Z] derived used in [BCY]:

∂

∂u
M (u) =

1

8π

∫
S2

(
|Ξ|2 +

1

2
|AF |2

)
dµ ◦

γ

[BG] derived and used:

∂

∂u
M (u) =

1

8π

∫
S2

(
|Ξ|2 + 4πT ∗LL

)
dµ ◦

γ



[C] introduced

F =
1

8

∫ ∞
−∞
| Ξ(u) |2 du (23)

with F/4π the total energy radiated to infinity in a given

direction, per unit solid angle.

⇒ Derived nonlinear memory effect

of gravitational waves

[Christodoulou]



[BCY] introduced

F =
1

8

∫ +∞

−∞

(
| Ξ |2 +

1

2
| AF |2

)
du . (24)

⇒ Derived nonlinear electromagnetic Christodoulou

memory effect

[Bieri-Chen-Yau]

[BG] introduced

F =
1

8

∫ +∞

−∞

(
| Ξ |2 +4πT ∗LL

)
du . (25)

⇒ Derived nonlinear Christodoulou memory effect for

neutrino radiation via null fluid

[Bieri-Garfinkle]



With this energy consider equation

div/ (Σ+ − Σ−) = ∇/ f

where f is a solution of

4/ f = 2 (F − F̄ ) , f = 0

∇/ , div/ ,4/ on S2. Integrability condition of the last two equa-

tions is that F is L2-orthogonal to the first eigenspace of 4/ :

F(1) = 0 .



Derive

Σ+ − Σ− =
1

2

∫ ∞
−∞

Ξ(u) du (26)

and

Σ(u) = Σ− +
1

2

∫ u

−∞
Ξ(u′) du′

Σ(u)−Σ−

related to

instantaneous displacements of faraway test masses

w.r.t. reference test mass, relative to which they are

initially at rest.

Σ+ −Σ−

yields

permanent displacement of the test masses.

Non-linear effect.

An effect observable in principle.



Investigate

Σ(u)−Σ− and Σ+ −Σ−

for physically relevant spacetimes.

1. Keep general Tij.

2. Investigate EV, EM, ENF.

3. Geometry of resulting spacetimes

⇒ Gravitational radiation in astrophysical scenarios.



Permanent Displacement Formula

Christodoulou’s Memory Effect ⇒ governed by the

permanent displacement formula Σ+ −Σ−.

Theorem 1. Let Σ+(·) = limu→∞Σ(u, ·) and Σ−(·) = limu→−∞Σ(u, ·).

In the following, let |S|2 denote a component of the energy-

momentum tensor with “right” decay. (S can be a tensor

or a function, depending on the fields. ) Moreover, let “T”

denote lower order components of the energy-momentum

tensor, where these can be quadratics of the fields. Let

F (·) =

∫ ∞
−∞

(
| Ξ(u, ·) |2 +c1 | S(u, ·) |2

)
du . (27)

Moreover, let Φ be the solution with Φ̄ = 0 on S2 of the

equation
◦
4/ Φ = F − F̄ .

Then Σ+ −Σ− is given by the following equation on S2:
◦
div/ (Σ+ −Σ−) =

◦
∇/ Φ . (28)

Proof - Sketch: We have

Σ(u) = Σ− −
∫ u

−∞
Ξ(u′)du′

and

Σ+ −Σ− = −
∫ ∞
−∞

Ξ(u′)du′ .



Consider the normalized null Codazzi equation

(div/ χ̂)A −
1

2
∇/ Atrχ+ εBχ̂AB −

1

2
εAtrχ =

−β(W )A + “t” (29)

Multiply equation (29) by r3 and take the limit as t→∞ on

Cu.

Let

E = lim
Cu,t→∞

(
r2ε
)

We obtain

◦

div/ Σ =
◦

∇/ H + E

H denotes

H = lim
Cu,t→∞

(
r2(trχ′ −

2

r
)
)
.

It can be shown that

∂H

∂u
= 0 .

⇒ Focus on E.



Hodge system for ε

div/ ε = −∇Nδ −
3

2
trθδ + η̂ · θ̂

−2(a−1∇/ a) · ε+ c“t”− c | s |2

curl/ ε = σ(W ) + θ̂ ∧ η̂ .

We work with the following

4Ψ = r | η̂ |2 −c | s |2

4Ψ′ = −ra−1λ
(
| η̂ |2 −| η̂ |2

)
+
r2a−1

4

(
aD/ 4 | s |

2 −aD/ 4 | s |2
)

whereas in the EV case treated in [CK] it is

4Ψ = r | η̂ |2

4Ψ′ = −ra−1λ
(
| η̂ |2 −| η̂ |2

)
.

We derive

div/ ε = ρ− ρ̄+ χ̂ · η̂ − χ̂ · η̂ + r−14/ Ψ− r−2∇NΨ′

−r−3a−1λΨ′ + l.o.t. (30)

curl/ ε = σ(W ) + θ̂ ∧ η̂ (31)



Continue from

div/ ε = ρ− ρ̄+ χ̂ · η̂ − χ̂ · η̂ + r−14/ Ψ− r−2∇NΨ′

−r−3a−1λΨ′ + l.o.t. (30)

curl/ ε = σ(W ) + θ̂ ∧ η̂ (31)

We compute the following limits in the new situation.

lim
Cu,t→∞

Ψ = Ψ lim
Cu,t→∞

Ψ′ = Ψ′

lim
Cu,t→∞

r∇NΨ = Ω(u, ·) lim
Cu,t→∞

r∇NΨ′ = Ω′(u, ·).

Multiply equations (30) and (31) by r3 and take the limits

on Cu as t→∞. This yields:

◦
curl/ E = Q+ Σ ∧Ξ (32)
◦
div/ E = P − P̄ + Σ ·Ξ−Σ ·Ξ

+
◦
4/ Ψ−Ψ′ −Ω′ . (33)

Investigate limits as u→ +∞ and u→ −∞.

⇒
E tends to a limit E+ as u→ +∞ and to E− as u→ −∞.



Have

◦
curl/ E = Q+ Σ ∧Ξ (32)
◦
div/ E = P − P̄ + Σ ·Ξ−Σ ·Ξ

+
◦
4/ Ψ−Ψ′ −Ω′ . (33)

Obtain
◦
curl/ (E+ − E−) = 0

Now, compute
◦
div/ (E+ − E−).

Have to consider the corresponding limits for the terms in-

volving Ψ and Ψ′, that is also Ω′.

We use the fact that

D/ 4 | s |
2= −trχ | s |2 +l.o.t. (34)

Using (34), (30), we deduce formulas for Ψ, Ψ′, Ω, Ω′ by

computing the limits in (33).



Evaluating the difference of the limits as

u → +∞ and u → −∞ in (33), the contribution of
◦
4/ Ψ,

Ψ′ and Ω′ comes only from terms in Ω′. We find that Ω′

tends to limits Ω′+(·) and Ω′−(·) as t → ∞ and t → −∞,

respectively. Thus, we conclude

Ω′+(·)−Ω′−(·) =

∫ +∞

−∞

(
| Ξ(u, ·) |2 −| Ξ(u, ·) |2

+c1 | S(u, ·) |2 −c1| S(u, ·) |2
)
du .

Finally, we obtain

◦
div/ (E+ − E−) = −Ω′+ + Ω′−

=

∫ +∞

−∞

(
− | Ξ(u, ·) |2 +| Ξ(u, ·) |2 (35)

−c1 | S(u, ·) |2 +c1| S(u, ·) |2
)
du .



We know that

(E+ − E−) =
◦
∇/ Φ (36)

with Φ being the solution of vanishing mean of

◦
4/ Φ = −Ω′+ + Ω′− on S2 .

Collect the results :

•
◦
div/ Σ =

◦
∇/ H + E

with ∂H
∂u

= 0.

•
◦
curl/ (E+ − E−) = 0

•
◦
div/ (E+ − E−) = −Ω′+ + Ω′−

=

∫ +∞

−∞

(
− | Ξ(u, ·) |2 +| Ξ(u, ·) |2

−c1 | S(u, ·) |2 +c1| S(u, ·) |2
)
du .

We conclude

◦
div/ (Σ+ −Σ−) = E+ − E− . (37)

This proves theorem 1.



Einstein-Maxwell Case

What happens in the presence of an electromagnetic field?

Einstein-Maxwell equations:

Gµν := Rµν −
1

2
gµν R = 8π Tµν , (38)

setting G = c = 1, µ, ν = 0,1,2,3, where

Gµν is the Einstein tensor,

Rµν is the Ricci curvature tensor,

R the scalar curvature tensor,

g the metric tensor and

Tµν denotes the stress-energy tensor of the electromag-

netic field.

In particular, F denoting the electromagnetic field, the

tensor Tαβ reads:

Tαβ =
1

8π

(
F ρ
α Fβρ −

1

4
gαβFρσF

ρσ
)

(39)

F is an antisymmetric covariant 2-tensor.

Tµν is trace-free. ⇒ Einstein equations (38) become

Rµν = 8πTµν . (40)



The Einstein-Maxwell (EM) equations are given by

Rµν = 8πTµν (41)

DαFαβ = 0 (42)

Dα ∗Fαβ = 0. (43)

Whereas in the EV case, the Weyl tensor satisfies the ho-

mogeneous equations

DαWαβγδ = 0 ,

in the EM case the corresponding equations are inhomoge-

neous

DαWαβγδ =
1

2
(DγRβδ −DδRβγ) . (44)



Zipser [Z] works with the same conditions as [CK] on the

metric, second fundamental form and curvature,

in addition she imposes a decay condition on the electro-

magnetic field, namely

F |H = o3

(
r−

5

2

)
. (45)

The null components of the electromagnetic field are

FA3 = α(F )A FA4

F34 F12.
(46)

The estimates in [Z] yield the decay behavior:

α(F ) = O (r−1 |u|−
3

2 )

F12, F34 = O (r−2 |u|−
1

2 )

FA4 = o (r−
5

2 )

α(F ) , F12 , F34 have limits at null infinity.

Guiding term

⇒α(F)



Limit

lim
Cu,t→∞

rα(F ) = AF(u, ·)

AF is a 1-form on S2 depending on u with decay property:

|AF(u, ·)| ≤ (1 + |u|)−3/2

Pointwise norms | | of the tensors on S2 relate to metric
◦
γ,

being the limit of the induced metrics on St,u ∀u as t→∞ .



Einstein-Null-Fluid and Neutrino Radiation

Describe burst of neutrinos as a null fluid:

Energy-momentum tensor has the form

Tij = N 2kikj (47)

k a null vector

N a positive scalar function.

Notation: in what follows:

Denote component T (X,Y ) = TijXiY j of the energy-momentum

tensor by TXY for any vectors X,Y on M .

The twice contracted Bianchi identities imply that

DjGij = 0 . (48)

Thus

DjTij = 0. (49)

The Einstein equations (38) for a null fluid reduce to:

Rij = 8πTij (50)



Typical sources of such neutrino bursts:

core-collapse supernovae

and

binary neutron star mergers.

Initially “at” burst: Neutrinos fly in all directions.

Later: Neutrinos follow the outgoing null geodesics

generated by L.

The vector k will be of the form

k = aL+ bL+ V

with V denoting a vector tangent to S.

Can be shown that :

along Cu as t→∞, L and V decay and

k finally becomes L.



Let k be a null geodesic, that is,

ka∇ak = ∇kk = 0

kaka = 0 .

Excursion to Minkowski spacetime

In Minkowski space there exist conformal Killing fields X,

that is,

∇(aXb) = φgab

for some scalar φ, that is

(LXg) = φg .

Then it follows that

ka∇a(Xak
a) = 0

and consequently that for each geodesic there exists a con-

stant c such that kaXa = c.



Back to Lorentzian spacetime

A Lorentzian manifold in general does not admit conformal

Killing fields.

⇒ Above equations do not hold.

However,

Asymptotic flatness ⇒ guarantees

the existence of almost- and quasi-conformal Killing fields.

This means

Deformation tensors are suitably small and tend to zero

as t→∞ in a suitable way.

Then

the afore-mentioned equations ‘hold in an asymptotic

sense’.



Recall the vectorfields

T =
1

2

(
L + L

)
,

K =
1

2

(
u2 L + u2 L

)
.

Deformation tensor for T

(T )παβ = (LTg)αβ. (51)

Deformation tensor for K

(K)παβ = (LKg)αβ. (52)

For a S-tangential vectorfield V it is

(LKg)(V, V ) =
1

2
u2(LLg)(V, V ) +

1

2
u2(LLg)(V, V )

= V AV Bu2χAB + V AV Bu2χAB .



In [BG] we derive

TLL = O(r−2τ−3
− )

Other components of T are of lower order.



Gravitational Wave Experiments

How do these results relate to experiment?

In his derivation of the nonlinear memory effect in the EV

case, Christodoulou shows how the theoretical result on

Σ+ − Σ− leads to an effect measurable by a laser inter-

ferometer gravitational-wave detector.

This effect shows as a permanent displacement of the

test masses of the detector after a wave train has passed.

Here discuss:

Permanent displacement of the test masses in the

neutrino (null fluid) case:

Null fluid comes into the formula Σ+ −Σ−.

Instantaneous displacement of the test masses in the

ENF case: unchanged.



3 test masses m0, m1, m2 suspended by equal length pen-

dulums.

m0: reference mass.

Measure by laser interferometry the distance of m1 and m2

from the reference mass m0

The beam splitter is at m0.

Motion of masses on the horizontal plane: considered free

for timelike scales much shorter than the period of the pen-

dulums.

Any difference in the light travel times between m0 and

m1 and m2, respectively, results in a difference of phase of

the laser light at m0.

m0, m1, m2 move along geodesics γ0, γ1, γ2 in spacetime.

T : unit future-directed tangent vectorfield of γ0

t: arc length along γ0.

Let Ht for each t be the spacelike, geodesic hyperplane

through γ0(t) orthogonal to T .



Consider the orthonormal frame field (T,E1, E2, E3) along

γ0, where (E1, E2, E3) is an orthonormal frame for H0 at

γ0(0), parallely propagated along γ0.

⇒ at each t, (E1, E2, E3) is an orthonormal frame for Ht

at γ0(t).

Assign to a point p in spacetime, lying in a neighbourhood

of γ0, the cylindrical normal coordinates (t, x1, x2, x3), based

on γ0, if p ∈ Ht and p = expX with X =
∑

i x
iEi ∈ Tγ0(t)Ht.

In these coordinates we have

gµν − ηµν = O (R d2) , (53)

where ηµν is the Minkowski metric and:

d = | X | =

√∑
i

(xi)2 (54)

is the distance of p from the center γ0(t) on Ht.

Let τ be the time scale in which the curvature varies sig-

nificantly.



Then, the displacements of the masses from their initial

positions will be

O(Rτ2) .

Assume that
d

τ
<< 1 . (55)

The speed of light can be taken to be 1.

Thus, differences in phase of the laser light will, un-

der this assumption, accurately reflect differences in

distance of m1 and m2 from m0.

The same assumption (55) allows us to replace the geodesic

equation for γ1 and γ2 by the Jacobi equation (geodesic

deviation from γ0).

d2xk

dt2
= − RkT lT xl (56)

with

RkT lT = R (Ek, T, El, T ) . (57)



Now, assume for simplicity that the source is in the E3-

direction.

Investigate the formula (56) for the Einstein-Null-Fluid

(ENF) situation:

Non-charged test masses: formula (56) stays the same, but

the null fluid comes in.

However, it enters at lower order.

It is:

Rαβγδ = Wαβγδ +
1

2
(gαγRβδ + gβδRαγ − gβγRαδ − gαδRβγ)

−
1

6

(
gαγgβδ − gαδgβγ

)
R . (58)

⇒

Rk0l0 = Wk0l0 +
1

2
(gklR00 + g00Rkl − g0lRk0 − gk0R0l) (59)

The ENF equations tell us:

R00 = 8πT00 ,



and in particular, we have

R00 = 8πT00 = 2π(TLL − TLL) (60)

we can investigate the components of the Ricci curvature

on the right hand side of (59).

R00 includes the term TLL. Worst decay behavior.

Consider L = T − E3, L = T + E3.

The leading components of the curvature are

αAB(W ) = R (EA, L, EB, L) (61)

αAB(W ) =
AAB(W )

r
+ o (r−2) . (62)

The leading components of the null fluid are

TLL =
T ∗LL

r2
+ o (r−2) . (63)



Denote the kth Cartesian coordinate of the mass mA for

A = 1,2 by xk(A).

Then the Jacobi equation becomes

d2 xk(A)

d t2
= −

1

4
r−1 AAB xl (B) + O (r−2)

that is

d2 x3
(C)

d t2
= 0

d2 xA(C)

d t2
= −

1

4
r−1 AAB xB(D) + O(r−2)

From the Jacobi equation ⇒ see that the null fluid enters

on the right hand side at order (r−2) only.

⇒ The null fluid does not contribute at leading order

to the deviation measured by the Jacobi equation.

⇒ At leading order, results for the Einstein vacuum case

apply.



Obtain: In the vertical direction there is no acceleration to

leading order (r−1).

Initially m1 and m2 are at rest at equal distance d0 and at

right angles from m0. This implies the following initial con-

ditions, as t→ −∞:

x3
(A) = 0 , ẋ3

(A) = 0 , xB(A) = d0δBA , ẋB(A) = 0.

The right hand side being very small, one can substitute

the initial values on the right hand side. Then the motion

is confined to the horizontal plane. One has to leading order:

··
x
A

(B) = −
1

4
r−1 d0 AAB . (64)

One obtains

ẋA(B) (t) = −
1

4
d0 r

−1

∫ t

−∞
AAB (u) du . (65)



In view of equation
∂Ξ
∂u

= −1
4
A and lim|u|→∞Ξ = 0

we obtain

−
∫ t

−∞
AAB (u) du = Ξ (t) (66)

and

ẋA(B) (t) =
d0

r
ΞAB (t) . (67)

As Ξ → 0 for u → ∞, the test masses return to rest after

the passage of the gravitational wave.

Taking into account
∂Σ
∂u

= −Ξ,

and integrating again:

xA(B) (t) = − (
d0

r
) (ΣAB (t) − Σ−) . (68)



The limit t→∞ is taken and it follows that the test masses

experience permanent displacements.

Thus

Σ+ −Σ−

is equivalent to an overall displacement of the test masses:

4 xA(B) = − (
d0

r
) (Σ+

AB − Σ−AB) . (69)

The right hand side of (69) includes terms from the

null fluid at highest order as given in our theorem 1.

Recall also: total energy F
4π

radiated to infinity in a

given direction per unit solid angle:

F =

∫ +∞

−∞

(
| Ξ |2 +4πT ∗LL

)
du .



Derive

Σ+ − Σ− =
1

2

∫ ∞
−∞

Ξ(u) du (70)

and

Σ(u) = Σ− +
1

2

∫ u

−∞
Ξ(u′) du′

Σ(u)−Σ−

related to

instantaneous displacements of faraway test masses

w.r.t. reference test mass, relative to which they are

initially at rest.

Σ+ −Σ−

yields

permanent displacement of the test masses.

Non-linear effect.

An effect observable in principle.



Now: Denote the direction of observation by ξ ∈ S2 ⊂ R3,

Let X, Y be arbitrary vectors lying in the tangent plane

at ξ, i.e. in TξS
2.

Let Π be the projection to the plane through the origin or-

thogonal to ξ.

< , > denotes the inner product.

The solution at the observation point ξ is expressed as

an integral over S2 of a contribution from each ξ′ ∈ S2:

(Σ+ − Σ−) (X, Y ) =

−
1

2π

∫
ξ′∈S2

(F − F[1])(ξ′)
< X, ξ′ >< Y, ξ′ > −1

2
< X,Y >| Πξ′ |2

1− < ξ, ξ′ >
dµ ◦

γ
(ξ′)

Subscript [1] denotes the projection onto the sum of the 0th

(l = 0) and 1st (l = 1) eigenspaces of
◦
4/ . Multiplicity of the

lth eigenspace 2l + 1, eigenvalue l(l + 1).



Recall

F =
1

8

∫ +∞

−∞
| Ξ(u) |2 du (EV)

F =
1

8

∫ +∞

−∞

(
| Ξ |2 +

1

2
| AF |2

)
du (EM)

F =
1

8

∫ +∞

−∞

(
| Ξ |2 +4πN ∗21

)
du (ENF)

and

Σ+ − Σ− = −
1

2

∫ +∞

−∞
Ξ(u) du .

Σ+ −Σ− yields permanent displacement of test masses.

Non-linear effect, i.e. nonlinear memory effect.

Σ(u) = Σ− +
1

2

∫ u

−∞
Ξ(u′) du′

Σ(u)−Σ− related to instantaneous displacements of

faraway test masses w.r.t. reference test mass, relative to

which they are initially at rest.



Ξ is dimensionless.

Σ has dimensions of length.

F has dimensions of length.

In the example of a binary coalescence

=> The solution formula for (Σ+ −Σ−) from above

• Has a nonlinear contribution from F

and

• A linear contribution from

(P − P[1])
+ − (P − P[1])

−



Linear effect

=> was known for a long time in the slow motion limit

[Ya.B. Zel’dovich, A.G. Polnarev 1974]

Nonlinear effect

=> was found by [D. Christodoulou 1991].

Contribution from electro-magnetic field to nonlinear

effect

=> was found by [L. Bieri, P. Chen, S.-T. Yau 2010

and 2011].

Contribution from neutrino radiation to nonlinear

effect

=> recent result by [L. Bieri, D. Garfinkle 2012 and

2013].



Open Questions

Many.....

For instance

• Geometry and null asymptotics of other spacetimes?

•What are the patterns in the gravitational radiation for var-

ious astrophysical scenarios? How is the geometry changed?

• What happens, when inserting other fields on the right

hand side of Einstein equations?


