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A look at the Kerr-Newman spacetimes

The family of Kerr-Newman spacetimes is fundamental in General Relativity. Each
element is identified by three real numbers m, a and q.

The global properties of the spacetime depend on these values.

Here, sufficient to restrict each spacetime to a suitable open subset and define:

Definition (Kerr-Newman spacetime)

For m, a, q ∈ R let Ma = R×
(
R

3 \ {x2 + y2 ≤ a2, z = 0}
)
, with (x , y , z) Cartesian

coordinates in R
3. The Kerr-Newman spacetime of mass m, specific angular

momentum a and charge q is the spacetime (Ma, gm,a,q) where

gm,a,q = −dt2 + dx2 + dy2 + dz2

︸ ︷︷ ︸

η

+
r 2 (2mr − q2)

r 4 + a2z2
ℓ⊗ ℓ,

where r ∈ C∞(Ma,R
+) is defined by x2+y2

r2+a2 + z2

r2 = 1 and

ℓ = dt +
r

r 2 + a2
(xdx + ydy) +

a
r 2 + a2

(ydx − xdy) +
zdz

r
.

x
y

z √

r2 + a2

r

Some properties:

Let R :=
√

x2 + y2 + z2. At large R, the metric is gm,a,q = η + O( 1
R )
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The hypersurface Hr0 = {r = r0} (r0 > 0 const.) is topologically R× S
2.

Hr0 is null for some r0 > 0 iff
√

a2 + q2 ≤ m 6= 0.

Kerr-Newman black hole spacetime: Kerr-Newman spacetime with
√

a2 + q2 ≤ m 6= 0.

The null hypersurface is Hr+ , where r+ := m +
√

m2 − a2 − q2 > 0.

Given any p ∈ Ma:

If r(p) > r+ then, for any R0 > 0, there exists a future directed causal curve
starting at p and entering the region {R > R0}.

If r(p) < r+, then all future directed causal curves starting at p lie in {r < r+} −→

Signals cannot ”escape” to infinity.

Hr+ separates both behaviours. Defines the event horizon of the black hole.

All sections S in Hr+ = R× S
2 are isometric to each other and have area

|S| = 8πm
(

m +
√

m2 − a2 − q2
)

− 4πq2 ≤ 16πm2.

This is the basic inequality behind the Penrose inequality conjecture.

Equality iff a = q = 0. This is the Schwarzschild class of spacetimes:

(

M0 = R× (R3 \ {0}), gm = η +
2m
R

(dt + dR)2
)

, m ∈ R
+, R = |x |δ
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Black hole spacetimes

The notion black hole requires a notion of infinity. A natural one is asymptotic flatness.

Several (inequivalent) definitions of asymptotic flatness. For definiteness:

Definition

A 4-dimensional spacetime (M, g(4)) is asymptotically flat if it admits an asymptotically
flat 4-end, i.e.

An open submanifold M∞ ≃ R× (R3 \ B(R0)) such that

∃C > 0 such that the components gµν of g(4)|M∞ in Cartesian coordinates
(t , x , y , z) satisfy (with R =

√

x2 + y2 + x2)

|gµν |+ |gµν |+ R|gµν − ηµν |+ R2|∂σgµν |+ R3|∂σ∂ρgµν | ≤ C.

Any Kerr-Newman spacetime is asymptotically flat.

For any r > R0 define Mr = {p ∈ M∞ : R(p) > r}.

The black hole region (w.r.t. the asymptotically flat four-end) is

B := {p ∈ M; ∃r(p) > R0 such that all future directed causal curves starting

at p lie in M \ Mr(p)}.

if B is non-empty, (M, g(4)) is a black hole spacetime.
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The event horizon H is the topological boundary of B.

H is a Lipschitz null hypersurface ruled by future inextendible null geodesics.

Recall:

Definition (Dominant and null convergence conditions)

If for all k1, k2 ∈ TpM null and future directed and all p ∈ M:

Ein(k1, k2) ≥ 0 then (M, g(4)) satisfies the dominant energy condition (DEC).

Ein(k1, k1) ≥ 0 then (M, g(4)) satisfies the null energy condition (NEC).

A hypersurface Σ is achronal if no two distinct points in Σ can be joined by a timelike
curve.

An important result concerning event horizons is the Area Theorem.

Theorem (Hawking ’72, Chruściel, Delay, Galloway, Howard ’01)

Assume (M, g(4)) is a black hole spacetime satisfying the NEC. Let Σ1 and Σ2 be
achronal, spacelike hypersurfaces and define HΣa := H∩Σa (a = 1, 2). If every point p
in HΣ1 can be joined to HΣ2 by a future directed curve starting at p then |HΣ1 | ≤ |HΣ2 |.

Any such HΣ is a section of the event horizon.
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Heuristics behind the Penrose inequality conjecture

In physical terms, it is expected that any black hole spacetime must settle down to
an asymptotic stationary state in the distant future.

All matter fields (except electromagnetic ones) are expected to be radiated away or
fall into the black hole region, so the asymptotic spacetime will be electrovacuum.

Black hole uniqueness theorem: Under suitable conditions, a stationary
electrovacuum black hole spacetime must be isometric to a Kerr-Newman black
hole outside their event horizons.

Consequence:

Expectation

For any black hole spacetime, ∃ m, a, q ∈ R satisfying
√

a2 + q2 ≤ m 6= 0 such that the
asymptotically flat four-end of the black hole approaches (in a suitable sense)
(Mr+ , gm,a,q) when t → +∞.

Asymptotically flat 4-ends admit a notion of total energy-momentum vector P.

P is an element of an abstractly defined Lorentzian vector space (V , η).
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Fundamental property:

An asymptotically 4-end satisfying the DEC and approaching (in a suitable sense)
a Kerr-Newman spacetime (Ma, gm,a,q) satisfies M2

ADM := −|P|2η ≥ m2.

Physically: gravitational radiation can only extract energy from the spacetime.

The first key insight by Penrose is the following chain of inequalities:

Let HΣ be any section of the event horizon and HΣ∞
a section of the event

horizon in the asymptotic future:

≤≤≤|HΣ| |HΣ∞
| 16πm2 16πM2

ADM

Area theorem Property of Kerr-Newman Energy can only be
radiated away

The resulting inequality |HΣ| ≤ 16πM2
ADM involves no future asymptotic properties.

However, still involves the event horizon, which is a global concept in the
spacetime.

The second key insight of Penrose was to argue that a similar type inequality (involving
total ADM mass and area of suitable surfaces) should hold for a general class of initial

data sets.
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Initial data sets

Initial data set: Triple (Σn, g,K ), (n ≥ 3): (Σ, g) Riemannian manifold (possibly
with boundary) and K symmetric 2-cov. tensor.

Dominant Energy Condition (DEC): ρ ≥ |J|g where

16πρ := Rg − |K |2g + k2, 8πJ := divg(K − k g) k = trgK .

(Σ, g,K ) is asymptotically flat if Σ = K ∪ (Rn \ B(R0)), K compact and in
Cartesian coordinates in R

n \ B(R0):

gij − δij = O(2)(
1

Rp
), Kij = O(1)(

1
Rp+1

), ρ, |J|g = O(
1

Rq
), p >

n − 2
2

, q > n.

ADM-energy EADM and ADM-linear momentum PADM : let cn := 1
2(n−1)ωn−1

,

EADM := cn lim
r→∞

∫

Sr

(∂jgij − ∂igjj) ν
idSr , Pi ADM := 2cn lim

r→∞

∫

Sr

(Kij − gijk) ν
jdSr .

Positive Mass Theorem: [Schoen & Yau ’79, Eichmair, Huang, Lee, Schoen ’11]
Under DEC and in dimensions 3 ≤ n ≤ 7: E2

ADM − |PADM |
2
δ ≥ 0.

When (Σ, g,K ) is embedded in a spacetime (Mn+1, g(n+1)): the energy-momentum
vector P has components (EADM ,PADM) and M2

ADM = E2
ADM − |PADM |

2
δ.
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Weakly outer trapped surfaces and future trapped region

The Penrose inequality involves surfaces that, in an appropriate sense, replace
sections of the event horizon.

Surface: smooth closed codimension-one embedded submanifold of int(Σ).

A surface is bounding if Σ \ S has more than one connected component.

Exterior region Ω+(S): the unbounded connected component of Σ \ S.

S1 encloses S2 if Ω+(S2) ⊂ Ω+(S1).

Ω− = Σ \ Ω+: interior region.

S

Σ

Ω+(S)

Ω−(S)

~m

~m

∂Σ

Mean curvature HS always computed with respect to the normal m pointing
towards Ω+(S).

Definition

A bounding surface S is weakly outer trapped if θ+ := HS + trSK ≤ 0. and a marginally
outer trapped surface (MOTS) if θ+ = 0.

The future trapped region T +
Σ ⊂ Σ is the union of the interior domains of all weakly

outer trapped surfaces in Σ.
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Theorem ([Andersson & Metzger ’07], [Eichmair ’09])

Let (Σ, g,K ) be asymptotically flat and of dimension 3 ≤ n ≤ 7. Then the topological
boundary ∂T +

Σ is either empty or a MOTS.

In any black hole spacetime, the future trapped region always lies inside the black
hole region.

Second key insight by Penrose: Assume the weak cosmic censorship hypothesis holds

“Generic” 3-dimensional asymptotically flat initial data sets for ”reasonable” matter
models and admitting a weakly outer trapped surface can be embedded as an achronal

hypersurface in a black hole spacetime.

So, if weak cosmic censorship holds then HΣ exists and encloses ∂T +
Σ .

HΣ cannot be located directly from the initial data, but it necessarily must have at
least as much area as the minimal area needed to enclose ∂T +

Σ [Jang & Wald ’77].
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The Penrose inequality for initial data sets

For any bounding S: |Smin(S)| infimum of areas of all surfaces enclosing S.

|HΣ| ≥ |Smin(∂T
+
Σ )|.

Combining with the Penrose inequality for asymptotically stationary black holes:

16πM2
ADM ≥ |HΣ|.

Conjecture (Penrose inequality)

Let (Σ, g,K ) be a 3-dimensional asymptotically flat initial data set satisfying DEC. Then

16πM2
ADM ≥ |Smin(∂T

+
Σ )|.

Moreover, if equality holds then (Σ \ T +
Σ , g,K ) can be isometrically embedded into the

Schwarzschild spacetime.

Two basic ingredients support the inequality:
Expected behaviour of black hole spacetimes.
The validity weak cosmic censorship conjecture.

Important problem to either prove the conjecture or find countere xamples.

In particular, it would provide a strengthening of the positive mass theorem for
initial data sets with appropriate (marginally) outer trapped boundary.
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Alternative versions

Equality case is only conjectured to imply embeddedness in Schwarzschild.

Must be so, because not all initial data sets of Schwarzschild satisfy equality.

Furthermore, the statement of the conjecture is not invariant under K → −K .

These two properties have led to some proposals generalizing the conjecture.

In several cases, counterexamples have been found.

There is, however, one version
for which:

All slices of Schwarzschild satisfy equality.

Symmetric under K → −K .

No counterexamples are known so far.

Define T −
Σ as the future trapped region of (Σ, g,−K ).

Question

Under the same assumptions as in the Penrose inequality conjecture, is the following
inequality true?

16πM2
ADM ≥ |∂(T +

Σ ∪ T −
Σ )|.

Stronger than the standard Penrose inequality. Not supported by the heuristics above.

However, (a version of) it holds in the spherically symmetric case.
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The Penrose inequality in the spherically symmetric case

(Σ, g,K ) is spherically symmetric if the group SO(3) acts by isometries on (Σ, g)
with orbits diffeomorphic to S

2 or points, and leaves K invariant.

Theorem (Malec & O’Murchadha ’94, Hayward ’96)

Let (Σ, g,K ) be 3-dimensional, asymptotically flat, satisfying DEC and spherically
symmetric. Then 16πE2

ADM ≥ |∂(T +
Σ ∪ T −

Σ )|.

Since E2
ADM ≥ M2

ADM this is weaker than the Penrose inequality conjecture.
Interesting problem: prove 16πM2

ADM ≥ |∂(T +
Σ ∪ T −

Σ )| in the spherical case.

The proof uses the Hawking mass: S orientable surface in (Σ3, g,K )

MH(S) =

√

|S|

16π

(

1 −
1

16π

∫

S

(

H2
S − (trSK )2

)

dS
)

.

Key properties:

MH(∂T
±
Σ ) =

√

|T ±
Σ |/16π (does not require spherical symmetry).

Let Sr be the SO(3) orbit of area 4πr 2 outside T +
Σ ∪ T −

Σ . Then MH(Sr ) is
monotonically increasing in r .
limr→∞ MH(Sr ) = EADM .

Since either T +
Σ encloses T −

Σ or viceversa, these three properties prove the theorem.
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Riemannian Penrose inequality

A particularly important case of the Penrose inequality involves time symmetric initial
data sets (Σ, g,K = 0).

T +
Σ = T −

Σ and ∂T +
Σ : outermost closed minimal surface in (Σ, g). −→ Hence its

own minimal area enclosure.

The DEC becomes Rg ≥ 0.

The total ADM mass coincides with the total ADM energy MADM = EADM .

So, the conjecture involves

Asymptotically euclidean 3-dim Riemannian manifolds (Σ, g) of non-negative
scalar curvature Rg ≥ 0 with outermost minimal (compact) boundary ∂Σ.

The inequality reads

16πM2
ADM ≥ |∂Σ|

The equality case is the Schwarzschild space of mass m = MADM > 0:

Σ = R
3 \ B(m/2), gSch =

(

1 +
m

2|x |δ

)4

δ
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Riemannian Penrose inequality conjecture in arbitrary dimension

The heuristic argument for the Penrose inequality is specifically 3 + 1-dimensional.

However, the statement of the inequality can be easily extended to any dimension.

The Schwarzschild space has an immediate generalization: Schwarzschild n-space

Σ = R
n \ B((m/2)1/(n−2)), gSch =

(

1 +
m

2|x |n−2
δ

) 4
n−2

δ

Conjecture (Riemannian Penrose inequality in arbitrary dimension)

Let (Σ, g) be an n-dim, n ≥ 3 asymptotically flat Riemannian manifold with outermost
minimal boundary ∂Σ and satisfying Rg ≥ 0. Then, its ADM mass MADM satisfies

MADM ≥
1
2

(
|∂Σ|

ωn−1

) n−2
n−1

, ωn−1 area of the standard unit sphere

and equality occurs if and only if (Σ, g) is the Schwarzschild n-space with m = MADM .

Interesting problem in Riemannian geometry.
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Riemannian Penrose inequality conjecture in low dimensions

Major breakthroughs for the Penrose inequality at the turn of the past century.

First breakthrough was due to Huisken and Ilmanen (Riemannian Penrose
inequality in dimension 3 for connected boundary).

Theorem (Huisken & Ilmanen ’97)

Let (Σ, g) be 3-dimensional, asymptotically flat with outermost minimal boundary ∂Σ
and satisfying Rg ≥ 0. Let {∂aΣ} be the connected components of ∂Σ. Then

MADM(g) ≥ max
a

√

|∂aΣ|

16π
.

Moreover, equality occurs if and only of (Σ, g) is the Schwarzschild 3-space.

Second breakthrough by Bray. No connectedness assumption.

Theorem (Bray ’99)

The Riemannian Penrose inequality conjecture in dimension three holds true.
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Strategy in Huisken & Ilmanen’s proof

Their starting point is an early heuristic argument [Geroch ’73], [Jang & Wald ’77] :

The Hawking mass MG(S) =
√

|S|
16π

(
1 − 1

16π

∫

S H2
SdS

)
is monotonically increasing

under inverse mean curvature flow provided S is connected.

Flow of surfaces:

Smooth map F : S × I → (Σ, g), I ⊂ R interval, such that
φt := F (·, t) is embedding.

mt a unit normal to St := φt(S) and Ht its mean curvature.

{St} define an inverse mean curvature flow iff F⋆(·, ∂t) =
1
Ht

mt .

m
S0 St

The Hawking mass approaches the ADM mass for large coordinate spheres in the
asymptotically flat end of (Σ, g).

The Riemannian Penrose inequality follows if there is an inverse mean curvature flow
by connected surfaces interpolating between ∂Σ and large coordinates.

Huisken & Ilmanen: Such smooth flow need not exist, but a suitable weak
formulation can be made to work.
Key analytic tool: Use the level sets of solutions of the PDE

divg

(

gradgu

|gradgu|

)

= |gradgu|, u = 0 on ∂Σ.
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Strategy in Bray’s proof

Key idea: use a flow of metrics interpolating between g and Schwarzschild metric.
A conformal flow is a family of metrics {gt}, t ∈ R

+ on Σ satisfying:
gt(x) is C1 in x , Lipschitz in t and satisfies dgt

dt = 4vt gt with vt solving:

∆gt vt = 0 on Ω+(St)
vt = 0 on Σ \ Ω+(St)
limx→∞vt = −1







where St is the minimal area enclosure of ∂Σ in (Σ, gt).

Structure of Bray’s proof:

With (Σ, g) as in the Riemannian Penrose inequality a conformal flow exists with
g0 = g and satisfies:

|St |gt = |∂Σ|g for all t ≥ 0.
limt→∞ Ω+(St) = ∅
The ADM mass MADM(t) of (Σ, gt) is monotonically decreasing.
After a t-dependent diffeomorphism (Ω+(St), gt) converges in a suitable sense to
a Schwarzschild space of mass m ≥

√
|∂Σ|g/(16π).

These properties imply the Riemannian Penrose conjecture:

MADM(g) = MADM(0) ≥ MADM(t) ≥ lim
t→∞

MADM(t) ≥ m ≥

√

|∂Σ|g
16π

.

19 / 27



The Huisken-Ilmanen argument is inherently 3-dimensional, Bray’s method can be
extended to higher dimensions.

Theorem (Bray & Lee ’09)

Let (Σn, g) be asymptotically flat, with compact outermost minimal boundary ∂Σ and
satisfying Rg ≥ 0. If 3 ≤ n ≤ 7 then

MADM(g) ≥
1
2

(
|∂Σ|

ωn−1

) n−1
n−2

.

The rigidity part in dimensions 4 ≤ n ≤ 7 is proven under a topological restriction on Σ
(requires the manifold to be spin).
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Riemannian Penrose inequality for graphs in Euclidean space

The Schwarzschild n-space of mass m > 0 can be
isometrically embedded as a graph in Euclidean space.

The inner boundary is a sphere of radius (2m)1/(n−2)

embedded in a hyperplane (taken e.g. as xn+1 = 0)

xn+1

R
n

Σ

Natural to ask whether the Riemannian Penrose inequality holds for appropriate graphs
in Euclidean space [Lam ’10].

General setup:

(Σ0, h) n-dim Riemannian manifold, I ⊂ R interval.

N = Σ0 × I with metric γ = h + (dxn+1)2.

Σ orientable embedded hypersurface in (N, γ), unit
normal n, induced metric g, K second fundamental
form.

xn+1

Σ0

Σ

n

Define ξ vector field tangent to the I factor with ξ(xn+1) = 1. Killing field Lξγ = 0.

Decompose
n

ξ

nT
ξT

Define ξ = N n + ξT

n = α ξ + nT
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A general identity follows [Lam ’10, Lopes de Lima & Girao ’12]:

divg

(

(K − kg)(ξT )
)

= N (Rg − Rh + Rich(nT , nT )) .

Strategy: integrate this identity on Σ and use the Gauss theorem.

Assume for simplicity {∂Σ} connected (not necessary). Enforce minimal boundary
as follows:

∂Σ embedded in Σ0 := {xn+1 = 0}and n|∂Σ
tangential to Σ0.

∂Σ = ∂Ω with Ω a domain in Σ0.
n ∂Σ

I

Σ0

Σ

Ω0

Assume (Σ0, h) is asymptotically flat with mass MADM(h) and Σ \ ∂Σ is an
asymptotically flat graph over Σ0 \ Ω.

The boundary integral of (K − kg)(ξT ) ”at infinity” gives MADM(g)− MADM(h).

At the inner boundary gives the mean curvature H of ∂Ω →֒ (Σ0, h).

Proposition ([Lam ’10])

MADM(g) = MADM(h) + cn

(∫

∂Ω

Hd(∂Ω) +
∫

Σ

N (Rg − Rh + Rich(nT , nT )) dΣ
)

.

Recall cn = 1
2(n−1)ωn−1

.
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Leads to the Riemannian Penrose inequality for graphs.

Theorem ([Lam ’10])

Let (Σ, g) be an asymptotically flat graph over the hyperplane {xn+1 = 0} in (Rn+1, δ)
(n ≥ 3). Assume that ∂Σ is compact and the boundary of a mean convex, star-shaped
domain Ω ⊂ {xn+1 = 0}. If Rg ≥ 0 and Σ is orthogonal to {xn+1 = 0} along ∂Σ, then

MADM(g) ≥
1
2

(
|∂Σ|

ωn−1

) n−2
n−1

.

The classic Minkowski inequality states cn

∫

∂Ω

Hd(∂Ω) ≥
1
2

(
|∂Ω|

ωn−1

) n−2
n−1

for any convex

domain Ω with smooth and compact boundary in Euclidean n-space.

Generalized to star-shaped domain with mean convex boundary by [Guan & Li ’09].

We are in the general setup above with (Σ0, h) = (Rn, δ).

Graph condition imposes N > 0 on int(Σ). So, NRg ≥ 0 and

MADM(g) ≥ cn

∫

∂Ω

Hd(∂Ω) ≥
1
2

(
|∂Σ|

ωn−1

) n−2
n−1

.

Except for spherical symmetry, this is the only case where the Riemannian
Penrose inequality is known to hold in arbitrary dimension.
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Equality in the Minkowski inequality occurs iff ∂Ω is a round sphere.

Equality in the Riemannian Penrose inequality for graphs implies Rg = 0 and ∂Σ is
a round sphere.

Rg = 0 is a fully non-linear equation for the graph function {xn+1 = f},
f ∈ C∞(Rn \ Ω,R).

Proving uniqueness is a non-trivial problem.

Theorem (Huang & Wu ’12)

Let Σ be as in the previous theorem. If

MADM(g) =
1
2

(
|∂Σ|

ωn−1

) n−2
n−1

.

then (Σ, g) is isometric to the Schwarzschild n-space.
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The Bray and Khuri approach to the general Penrose inequality

The Penrose inequality conjecture in the non-time symmetric case is a hard
problem.
(Partially) proven only in dimension 3 and spherical symmetry.
Interesting proposal by [Bray & Khuri ’09] to address the general case.

It is natural to ask whether the general case can be reduced to the Riemannian case.

Deform the metric g in (Σ, g,K ) to another metric g with Rg ≥ 0 and apply the
Riemannian Penrose inequality.

Successful approach for the Positive Energy Theorem in the non-time symmetric case
[Schoen & Yau ’79]:

Jang deformation [Jang ’78]: g = g + df ⊗ df , f : Σ → R solving the Jang equation.

trg




Hessg f

√

1 + |df |2g
− K



 = .0

Unsuitable approach for the general Penrose inequality [Malec & O’Murchadha 2004].

Bray & Khuri propose a modified deformation and set of equations:

Modified Jang transformation:

g = g + ϕ2df ⊗ df , f ∈ C∞(Σ,R), ϕ ∈ C∞(Σ,R+).
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Given f , ϕ define an auxiliary spacetime M = Σ× R, g(4) = −ϕ2dt2 + (g + ϕ2df ⊗ df ).

Define Σf := {t = f}:

h: Second fundamental form w.r.t past
directed unit normal n.

v : tangent vector to Σf such that
∂t = N(n + v)

n

(Σ, g = g + ϕ2df ⊗ df )

t
∂t

v (Σf , g)

{t = f}

(M, g(4))

Proposition (Bray & Khuri, 2009)

If f and ϕ satisfy the generalized Jang equation , trg (h − K ) = 0, then,
Rg = 16π(ρ− J(v)) + |h − K |2g + 2|q|2g + ϕ−1divg

(
ϕ (h − K )(~v , ·)

)
.

2 unknowns −→ Need for a second PDE. Bray and Khuri make two proposals:

Divergence equation: divg

(
ϕ (h − K )(~v , ·)

)
= 0 (makes R(g) ≥ 0).

Jang-IMCF equation: ϕ = |Du|geu/2, u solution of weak IMCF in (Σ, g)
well-suited for applying the Huisken-Ilmanen method on (Σ, g)

Both imply sufficient positivity of R(g) to apply the Riemannian Penrose inequality.

Main issue: Existence of solutions under appropriate boundary con ditions

Existence of solutions of the generalized Jang equation for prescribed ϕ [Han &
Khuri ’12].
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Final remarks

The Penrose inequality conjecture is an important problem in General Relativity and in
Geometric Analysis.

Proving the conjecture would give indirect support to the weak cosmic censorship
conjecture and would strengthen the positive mass theorem.

Finding counterexamples would indicate that the weak cosmic censorship
conjecture might be false.

In this talk I have left out many issues concerning the Penrose inequality conjecture:

There are versions of the Penrose inequality conjecture involving asymptotically
hyperbolic initial data sets or null hypersurfaces approaching null infinity.

There exist a number of partial, or suboptimal, results concerning this inequality in
several situations.

There exist stronger versions involving the total charge of the spacetime (and/or
the total angular momentum under additional symmetry assumptions) and
interesting recent results on these.

The Penrose conjecture can be used to derive conjectures involving the geometry
of surfaces in simple spacetimes like Minkowski or Schwarzschild.

Etc.
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