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Overview

1. Statement of the problem and the result

2. The linearized equations

3. What was known before

4. Estimates for the linearized system

5. Outlook on non-linear problems
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The Black Hole Stability Problem...

... was introduced in previous talks. It corresponds to understanding

the dynamics of the vacuum Einstein equations

Rµν [g] = 0 (1)

in a neighborhood of the the Kerr family of solutions (M, gM,a).

An obvious approach is to try to linearize (1). In harmonic gauge

2ggµν = Q (∂g, ∂g)

so simplest toy-model is 2gM,aψ = 0. This problem is now understood.

[Dafermos-Rodnianski, Andersson-Blue, Tataru-Tohaneanu, Aretakis,

Shlapentokh-Rothman, Luk, ...].
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Theorem [Dafermos, G.H., Rodnianski]

The Schwarzschild spacetime is linearly stable against gravitational

perturbations.
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The Einstein equations and Linearization

The analytical content of Rµν [g] = 0 is contained in

∇µWµνστ = 0 Bianchi Equations

∇Γ + ΓΓ = W Structure Equations

Linearize around background with connection Γ0 and curvature W◦:
(

∂ + Γ◦ + Γ(1)
) (

W◦ +W (1)
)

= 0
(

∂ + Γ◦ + Γ(1)
) (

Γ◦ + Γ(1)
)

= W◦ +W (1)
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(

∂ + Γ◦ + Γ(1)
) (

W◦ +W (1)
)

= 0 (2)
(

∂ + Γ◦ + Γ(1)
) (

Γ◦ + Γ(1)
)

= W◦ +W (1) (3)

Around Minkowski, W◦ = 0 so Γ(1), drops out of (2). → Decoupling!

The linearized spin 2 equations ∂µWµνστ = 0 on Minkowski were

understood in [Chr-Kl] paper “Asymptotic Properties of linear field

equations in Minkowski space”.

→ Decay via conformal vectorfields and Bel-Robinson tensor for W

Slide 6



Around Schwarzschild W◦ 6= 0, so coupling even at linear level:

(∂ + Γ◦)W
(1) +W◦Γ

(1) = 0

(∂ + Γ◦) Γ(1) + Γ◦Γ
(1) = W (1)

(4)

1. How does one prove boundedness for the coupled system (4)?

2. Do there exist quantities (components of W (1) or Γ(1)) which

(a) decouple

(b) satisfy a “good” equation

(c) control the remaining quantities
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The study of (4) has a long tradition in the physics literature (cf. the

monograph [Chandrasekhar]). However, a uniform boundedness

statement was never obtained.

A fruitful way to study (4) proceeds via a null-decomposition.

Suppose we look at a family of metrics in double null coordinates

[Christodoulou]

g = −Ω2dudv + /gAB

(

dθA + bAdv
) (

dθA + bAdv
)

(5)

Associated null-frame

e3 =
1

Ω
∂u , e4 =

1

Ω

(

∂v + bAeA

)

, eA =
∂

∂θA
(6)

→ Express the equations with respect to this frame and linearize.
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Canonical Notation

There is a canonical notation.

χAB = g (∇eA
e4, eB) second fundamental form of S2

u,v in Cu (7)

Construct trχ and χ̂, which is symmetric traceless.

In Schwarzschild, we have χ̂ = 0 and Ωtrχ = 2
r

(

1 − 2M
r

)

.

Hence write χ̂ and (Ωtrχ)(1) for linearized part.

For the curvature components,

αAB = W (e4, eA, e4, eB) and αAB = W (e3, eA, e3, eB) (8)

which vanish in Schwarzschild. Also, ρ = W (e3, e4, e3, e4).

In Schwarzschild ρ = − 2M
r3 and hence write ρ(1) for linearized part.
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DS

√
g(1)

√
gS

=
“

Ωtrχ
”(1)

DS

√
g(1)

√
gS

= (Ωtrχ)(1) − /divb

∂

∂u
b
A

= 2Ω
2
S

»

“

η − η
”♯
–A

DS

“

Ωtrχ
”(1)

= Ω2
S

0

@2 /divη + 2ρ̂ + 4ρS

Ω(1)

ΩS

1

A−
1

2
(Ωtrχ)S

„

“

Ωtrχ
”(1) − (Ωtrχ)(1)

«

DS (Ωtrχ)(1) = Ω2
S

0

@2 /divη + 2ρ̂ + 4ρS

Ω(1)

ΩS

1

A−
1

2
(Ωtrχ)S

„

“

Ωtrχ
”(1) − (Ωtrχ)(1)

«

DS (Ωtrχ)
(1)

= − (Ωtrχ)S (Ωtrχ)
(1)

+ 2ωS (Ωtrχ)
(1)

+ 2 (Ωtrχ)S ω
(1)

DS

“

Ωtrχ
”(1)

= −
“

Ωtrχ
”

S

“

Ωtrχ
”(1)

+ 2ωS

“

Ωtrχ
”(1)

+ 2
“

Ωtrχ
”

S
ω(1)
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/∇3

„ 1

Ω
χ̂

«

+
1

Ω
trχχ̂ = −

1

Ω
α , /∇4

„ 1

Ω
χ̂

«

+
1

Ω
trχχ̂ = −

1

Ω
α

/∇3 (Ωχ̂) +
1

2
Ωtrχχ̂ +

1

2
Ωtrχχ̂ = −2Ω/D⋆

2η

/∇4

“

Ωχ̂
”

+
1

2
Ωtrχχ̂ +

1

2
Ωtrχχ̂ = 2Ω/D⋆

2η .

/divχ̂ = −
1

2
ηtrχ + β +

1

2Ω
/∇A

“

Ωtrχ
”(1)

/divχ̂ = −
1

2
ηtrχ − β +

1

2Ω
/∇A (Ωtrχ)

(1)
.

/∇3η =
1

2
trχ

“

η − η
”

+ β , /∇4η = −
1

2
trχ

“

η − η
”

− β

DSω(1) = −Ω2
S

0

@ρ(1) + 2ρS

Ω(1)

ΩS

1

A , DSω(1) = −Ω2
S

0

@ρ(1) + 2ρS

Ω(1)

ΩS

1

A

ω(1) = DS

0

@

Ω(1)

ΩS

1

A , ω(1) = DS

0

@

Ω(1)

ΩS

1

A ,
“

η + η
”(1)

= 2 /∇A

0

@

Ω(1)

ΩS

1

A
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/∇3α +
1

2
trχα + 2ω̂α = −2/D⋆

2β − 3χ̂ρ0

/∇4β + 2trχβ − ω̂β = /divα

/∇3β + trχβ + ω̂β = /D⋆
1

„

−ρ(1), σ

«

+ 3ηρ0

/∇4ρ(1) +
3

2
trχρ(1) = /divβ −

3

2

ρS

ΩS

(Ωtrχ)(1)

/∇3ρ(1) +
3

2
trχρ(1) = − /divβ −

3

2

ρS

ΩS

“

Ωtrχ
”(1)

/∇4σ +
3

2
trχσ = − /curlβ

/∇3σ +
3

2
trχσ = − /curlβ

/∇4β + trχβ + ω̂β = /D⋆
1

„

ρ(1), σ

«

+ 3ηρ0

/∇3β + 2trχβ − ω̂β = − /divα

/∇4α +
1

2
trχα + 2ω̂α = 2 /D⋆

2β − 3χ̂ρ0
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Theorem (second version).

Solutions to the above system of gravitational perturbations

decay polynomially in time to a linearized Kerr solution.

Remarks:

• decay sufficient for non-linear applications (more later)

• “stationary modes” can be computed explicitly (more later)
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What was known? I

The components α and α decouple and satisfy a wave equation

(Teukolsky equation; ∆ = r2 − 2Mr; s = 2)

∂r (∆∂rα) −
1

∆

(

r2∂t − (r −M) s
)2
α− 4sr∂tα

+∂cos θ

(

sin2 θ∂cos θα
)

+
1

sin2 θ
(∂φ + is cos θ)

2
α = 0

No energy estimate known!

How to control the remaining quantities?

Remark: This decoupling remains true in Kerr.
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What was known? II

On the other hand, it is known that certain metric components satisfy

the Zerilli equation in frequency space

d2φ

dr2⋆
+

[

ω2 −
2n2 (n+ 1) r3 + 6n2Mr2 + 18nM2r + 18M3

r3(nr + 3M)2
(1 − µ)

]

φ = 0

Here (φ = φml)

d

dr⋆
=

(

1 −
2M

r

)

d

dr
and n =

1

2
(l − 1)(l + 2)

One can obtain some control over φ but it is hard to see what one

actually controls in physical space and how to go from this to the

remaining metric components and their derivatives.
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In summary, either

• equation for geometric quantity which decouples but neither

useful estimates available nor clear how to control everything

OR

• good equation for artificial/ non-geometric quantity from which it

is not clear how to control the other quantities.

In any case, none of these approaches leads to a uniform boundedness

or decay statement for solutions to the linearized equations.
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A third approach that has been tried is to derive a wave equation for

the middle components ρ or ρ(1). Indeed ρ itself satisfies a decoupled

wave equation

2RWρ = quadratic terms ≡ 0

But ρ does not decay and writing ρ−
(

− 2M
r3

)

will lead to coupling

with the connection coefficients and destroy the decoupling!

Remark: In the Maxwell case, this works:

See [Blue, Blue-Soffer, Andersson-Blue].
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The solution will be

1. to introduce a quantity which lives purely in physical space

2. the quantity satisfies a “good” equation without any special gauge

conditions. The analysis does not need separation of variables.

3. the quantity naturally captures the linearized Kerr modes

4. the quantity indeed eventually controls all curvature components

and Ricci-coefficients which decay.
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Here is the quantity:

P = /D
⋆

2 /D
⋆

1

(

−ρ(1), σ
)

+
3

4
ρ0trχ

(

χ̂− χ̂
)

(9)

Here

/D
⋆

1

(

−ρ(1), σ
)

= /∇Aρ
(1) + ǫAB /∇

B
σ

(

/D
⋆

2ξ
)

AB
= /∇AξB + /∇BξA − /gAB

(

/∇
C
ξC

)

(10)

Observations

• P is a symmetric-traceless tensor (no ℓ = 0 and ℓ = 1 modes). It

combines two derivatives of curvature and connection coefficients

• The linearized Kerr fields have σ 6= 0 but sit in the kernel of /D
⋆

2 /D
⋆

1
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P = /D
⋆

2 /D
⋆

1

(

−ρ(1), σ
)

+
3

4
ρ0trχ

(

χ̂− χ̂
)

We prove:

1. P decouples and satisfies a Regge-Wheeler equation for which one

can prove both boundedness and integrated decay

2. P eventually controls all other quantities
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Remark

We were lead to this quantity from the appendix of Chandrasekhar’s

1975 paper “On the equations governing the perturbations of the

Schwarzschild black hole.” There, he discusses transformations (in

frequency space!) that map solutions of Teukolsky to solutions of

Zerilli and (in the appendix!) to Regge-Wheeler.

Once you translate back to physical space you have

P ∼ /∇3

“

2T αrΩ2
”

+
2

r

 

1 −
3M

r

!

/∇3

“

αrΩ2
”

+ 2Ω

„

−
1

2
/∆ + K

«

“

αΩ2r
”

− 3ρ0Ω
“

αΩ2r
”

for

T =
1

2
Ω

`

/∇3 + /∇4

´

and K = r−2, Ω =

r

1 −
2M

r
, ρ0 = −2Mr−3.
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The Regge-Wheeler equation

We have that φ = r3PAB satisfies

1

1 − 2M
r

∂u∂vφ−

(

/∆ −
4

r2

)

φ−
6M

r3
φ = 0 (11)

The positive conserved energy is then almost obvious.

An integrated decay estimate was shown by [Blue-Soffer] (also [GH]).

Finally, one can apply the results of [DafRod] “A new physical space

approach to decay for the wave equation...” to go from integrated

decay to polynomial decay rates for the energy.
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Obtaining bounds on all other quantities

Note that it is already non-trivial that P controls anything!

The key is to define two new quantities

ψ = 2 /D
⋆

2β + 3ρ0χ̂ and ψ = 2 /D
⋆

2β − 3ρ0χ̂ . (12)

We have the propagation equations

/∇3

(

ψr3Ω
)

= r3ΩP (13)

and

/∇3

(

rΩ2α
)

= rΩ2ψ (14)

These equations can be integrated from initial data as transport

equations. You have to be careful with the weights near the horizon

and near infinity.
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Similar relations hold for the bared quantities.

From α you can obtain χ̂ via

/∇4χ̂+ trχχ̂− 2ω̂χ̂ = α

This equation cannot be integrated directly from data all the way to

the horizon. A version of the redshift-effect via commutation is

necessary.

Again, a similar arguments can be invoked for the bared quantities.

There is a hierarchy in the equations which one exploits.
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Overview

Quantity P [Regge-Wheeler; integr. decay → polynomial rates]

↓

Quantities ψ and ψ [satisfy transport with P on the right hand side]

↓

Quantities α and α [satisfy transport with ψ, ψ on RHS]

↓

Quantities χ̂ and χ̂ [satisfy transport with α, α on RHS]

↓

Quantities /D
⋆

2β and /D
⋆

2β [from revisiting ψ, ψ]

↓

...
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The non-trivial Kerr modes

Note that one can only show decay for /D
⋆

2β. This is again clear, since

βkerr 6= 0 but /D
⋆

2βKerr = 0.

The linearized Kerr-fields can be computed explicitly from the paper

of Pretorius and Israel expressing the Kerr metric in double-null

coordinates. Linearizing in the angular momentum parameter a

provides the explicit expressions.

The change in mass (l = 0 mode) is actually quadratic.
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Theorem (third version)

The following bounds hold for solutions of the linearized system.

• uniform boundedness:
∫

Σt⋆
2

|DW (1)|2 + |W (1)|2 + |DΓ(1)|2 + |Γ(1)|2

.

∫

Σt⋆
1

|DW (1)|2 + |W (1)|2 + |DΓ(1)|2 + |Γ(1)|2 +

∫

Σt⋆
1

|DP |2 + |P |2

• integrated decay:
∫

M(t⋆
1 ,t⋆

2)
|DW (1)|2 + |W (1)|2 + |DΓ(1)|2 + |Γ(1)|2 .

∫

Σt⋆
1

RHS

[It being implicit that W (1) and Γ(1) have their Kerr parts removed.]
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The relation with “ultimately Schwarzschildean” spacetimes

In a previous paper, I introduced a class of spacetimes which converge

at a certain polynomial rate to Schwarzschild.

There was a complicated decay hierarchy:

A spacetime is UltSn if

• (the energy of) n-derivatives of curvature is bounded

• (the energy of) (n− 1)-derivatives of curvature decays like 1/t

• ...

I showed: UltSn =⇒ UltSn+1.
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This was a conditional result. I could not improve all the decay rates.

What was missing was an estimate “at the lowest order”.

The basic idea was

/∇3α+
1

2
trχα+ 2ω̂α = −2 /D

⋆

2β + 3ρ0χ̂ (15)

/∇3Tα+
1

2
trχTα+ 2ω̂Tα = −2 /D

⋆

2Tβ + 3ρ0T χ̂ (16)

/∇3Tα+
1

2
trχTα+ 2ω̂Tα = −2 /D

⋆

2Tβ + 3ρ0

(

/D
⋆

2η + α
)

+ l.o.t. (17)

Multiplying by Tα requires to control
∫

(

/D
⋆

2η + α
)

Tα =

∫

1

2
T

(

|α|2
)

+Tη · /divα =

∫

1

2
T

(

|α|2
)

+Tη · /∇4β
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Recall the boundedness statement:
∫

Σt⋆
2

|DW (1)|2 + |W (1)|2 + |DΓ(1)|2 + |Γ(1)|2 +

∫

Σt⋆
2

|DP |2 + |P |2

.

∫

Σt⋆
1

|DW (1)|2 + |W (1)|2 + |DΓ(1)|2 + |Γ(1)|2 +

∫

Σt⋆
1

|DP |2 + |P |2

The above ultimately Schwarzschildean technique can be used to

obtain a boundedness statement for the linearized fields without any

derivative loss. This is important for non-linear applications.
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Nonlinear applications

Given the present result as well as the ultimately Schwarzschildean

paper (where the non-linearities are understood) we can address

Open Problem: Consider axisymmetric initial data for the vacuum

Einstein equations sufficiently close to Schwarzschildean data and such

that the angular momentum vanishes.

Prove that the maximum development contains a black hole which

dynamically converges to a member of the Schwarzschild spacetime.

Remaining Difficulty: How to determine the final mass.
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Further directions

• the Kerr case: analogue of P ?

• ultimately Kerr (work in progress)
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