


CONSERVATION LAWS FOR THE WAVE EQUATION ON
NULL HYPERSURFACES AND APPLICATIONS

STEFANOS ARETAKIS

These conservations laws are related to conserved charges in Maxwell’s equa-
tions. Those arise from closed 2-form.

These conservation laws are the obstruction to gluing of the null constraint
equations.

Outline:

(1) Examples
(2) Applications to black holes
(3) General theory and gluing problem

Purposes: We are studying the stability of the wave equation on black holes,
and also the general theory.

Examples: 1. R3+1. Take a solution to �ψ = 0 in coordinates (u = t− r, v =
t + r, θ). Then

∫
Sv

1
r2
∂u(rψ)dV is conserved independent of v. Fig 1. [Warning:

his u’s and v’s were nearly identical throughout, so I may accidentally interchange
them.]

2. ”Newman-Pensrose” constant: Take (u, r, θ). Then ∀ solutions to �ψ = 0,

lim
r→∞

∫
Su

r2∂r(rψ) sin θdθ

is preserved. See fig 2. We can write

ψ(u, r, θ) = α2(u, θ)/r + α2(u, θ)/r
2 +O(1/r3).

Here α1 is known as a radiation field. The second term is what gives the conserved
quantity, i.e. the conserved quantity is

∫
S2 α2(u, θ) sin θdθ.

3. Kerr family: a,m are the parameters. |a| = m is extremal case. Take
(v, r, θ) for coordinates. We have rH+ = m. For any ψ such that �ψ = 0, then

H0[ψ] :=

∫
Sv

(
∂rψ +

sin2 θ

4
(∂vψ) +

1

2m
ψ

)
dV

is independent of v. See fig 3.
Fig 4. We want to find quantities on S0 (in figure 4) since then never decrease?

[I’m not sure I got this right.]
Applications:
Evolution of linear waves on black holes. We split our spacetime into 3 regions;

the area near the horizon H, called A, B in the middle and the region C near
infinity. (see figure 5)
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Difficulties:

(1) Redshift effect in A
(2) Trapping effect in B
(3) Understanding AF region of C
(4) superradiance
(5) low-frequency obstructions

These are here for all of the Kerr metrics, but in the extremal case these
difficulties couple. Others have shown that you get decay for non-extremal case.
In particular, |ψ| < 1

2
and |Dkψ| < 1

2
for {r ≥ rH}.

In the extremal case, 1. there is no redshift effect i.e. the surface gravity k
becomes zero. 2. The trapping reaches H, so A does not exist. This is because
there exists a sequence γr0 , null geodesics, that are supported on {r = r0}, with
r0 → rH . Sbierski has constructed approximate solutions to the wave equation,
finite regions that stay close to these null geodesics. See fig 6. There exists ψλ
with E[ψλ] ∼ c.

3. Trapping and superraddiance are coupled. This is because geodesics ap-
proaching the horizon become superradiant.

Let us look at symmetric solutions to �ψ = 0 with Φψ = 0. Thus γr ⊥ Φ := ∂φ.

See fig 7. In this case, there is no superradiance. We have |ψ| < 1/2
3
5 for

sufficiently regular data. Also, |∂vψ| < 1/2
3
5 . This immediately gives us that

supSv
(∂rψ) ≥ cH0, looking at a conserved quantity on Kerr.

We can do better if we look at higher derivatives. supSv
|∂r∂rψ| ≥ cH0v.

The more derivatives, the better growth. Thus we have an instability, since this
implies blowup.

Recently, Bizon-Friedrich, Reall, et al have shown that there is a correspon-
dence in the following sense: see fig 8. For an extremal Kerr there exists a
diffeomorphism F : D → D sending the pieces to each other as drawn. For any
solution of �ψ = 0 with Φψ = 0, then �(F ∗(φ)) = 0. The conserved quantity on
the I+ thus corresponds to the one on the horizon.

Reall-Lucietti have derived gravitational conservation laws for extremal Kerr.
What happens if we consider initial data which is compactly supported? Then

the conserved quantity could be 0, so a priori the derivatives of ψ could decay.
But it turns out that even if H0[ψ] = 0, then supSv

|∂v∂v∂vψ| → ∞ for “generic”
data.

We now consider (M, g), not necessarily satisfying Einstein equations. See fig
9. Take a foliation of H, a null hypersurface, which is a collection S = (Sv)v,
and can be written as 〈S0,Ω, Lgeod〉, where Lgeod satisfies the geodesic equation.
Why? We can write L = Ω2Lgeod. If {v = 0} = S0, then Sv = {v = v0}.

The induced metric /g. We have the metric induced by the diffeomorphism

from S2 to S0. This metric is /gS2(1)
. Let Y s be the null vector normal to to Sv,

normalized such that g(Y s, Lgeod) = −1.
Conservation laws:
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We define

W S := {Θ ∈ C∞(H) : LΘ = 0, ∀ψ s.t. �ψ = 0, ∂v

(∫
Sv

Y s(φψ)Θd/gS2(1)

)
= 0}

where there exists a unique /̂g with d/̂g = d/gS2(1)
, with /g = φ2/̂g.

1. The only conservation laws with respect to S that H can admit are of the
above form, i.e. W S 6= 0.

2. We can characterize null hypersurfaces that have conservation laws. Given
a foliation S of H, we define OS : C∞(ψ)→ C∞(ψ) by

OSψ := Ω2 /∆ψ+( /∇Ω2+2Ω2J#) /∇ψ+

[
2 /div(ΩJ#) + ∂v(Ωtrχ) +

1

2
(Ωtrχ)(Ωtrχ)

]
ψ

where J is the torsion of Sv and trχ, trχ are the null mean curvatures.
Let

US := {Θ ∈ C∞(H) : LΘ = 0, OS
v

(
1

φ
Θ

)
= 0∀v}

where OS
v = OS|Sv .

Then W S = US, and so we get a conservation law.
3. What happens if we refoliate? Assume that, with respect to S, we have a

conservation law. If we refoliate, S ′, do we still have a conservation law? If S, S ′

are two foliations, then OS
(

1
φ
Θ
)

= OS′
(

1
φ
Θ
)

for any Θ such that LΘ = 0.

We then sweep an element of S ′ with foliations from the other. Take Θ ∈ W S.

We apply property 3, and get OS′
(

1
φ
Θ
)

= 0, and so we know something about

the kernel of the operator. Thus W S = W S′
. We thus get a conservation law for

any foliation, and also the conserved quantity is equal.
4. The conservation laws are the only obstruction to the characteristic gluing

problem. If we give data on shaded lines (fig 9), we get solution in shaded
rectangle. If we want to glue solutions together, this is the problem. Can only
glue solutions (see fig 10) if the conserved quantities are conserved. This is the
only obstruction.


