


ON THE FORMATION OF TRAPPED SURFACES

SERGIU KLAINERMAN

Initial data slide: We can specify the traceless part of the null 2nd fundamental
forms, as in figure 1.

Main ideas slide: See figure 2.
Intuition of result (not slide): Figure 3. If I start with something deformed,

the area is going down in a local region, and so trχ is negative locally. But this
won’t work globally since can’t do it at all points. This result says I can deform
the initial surface everywhere except around a point enough so that I get trχ
negative everywhere except the point, and then use the short pulse to get the
rest of the trapped surface. trχ is controlled from the first part, the existence
result.

Local rigidity slide: Need to extend Z. If I can extend to region where T is
timelike, I can appeal to analyticity, or the result on the slide.

For 1st result, we want the space to be strongly gravitating, but we want double
null foliation to exist. Is it difficult to avoid caustics, but still strongly gravitating
enough to make trapped surfaces? No. The existence part controls this, and it
is hard, but past that, it is not difficult.
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BLACK HOLES REALITY TESTS.

a. RIGIDITY. Does the Kerr family K(a,m), 0 ≤ a ≤ m,
exhaust all possible, stationary, asymptotically flat, vacuum
black holes ?

b. STABILITY. Is the Kerr family stable under arbitrary small
perturbations ?

c. COLLAPSE. Can black holes form starting from reasonable
initial data configurations ? Formation of trapped surfaces.



BLACK HOLES REALITY TESTS

RIGIDITY.

STABILITY.

COLLAPSE. Can black holes form starting from reasonable
initial data configurations ? Formation of trapped surfaces.

Penrose Singularity Theorem(1969)

Christodoulou’s Trapping Theorem(2008)

Kl-Rodnianski(2010)

Kl-Luk-Rodnianski(2013)



PENROSE SINGULARITY THEOREM

THEOREM. Space-time (M, g) cannot be future null geodesicaly
complete, if

Ric(g)(L, L) ≥ 0, ∀L null

M contains a non-compact Cauchy hypersurface

M contains a closed trapped surface S

Null second fundamental forms χ, χ



QUESTIONS

Quantitative version of the incompleteness theorem ?

Can trapped surfaces form in evolution ? In vacuum ?
Does the existence of a trapped surface implies the presence
of a Black Hole ?

True if weak cosmic censorship holds true.

Significance of the uniformity condition ?

Can singularities form starting with non-isotropic, initial
configurations?
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FORMATION OF TRAPPED SURFACES

PROBLEM. Specify an open set of regular initial conditions, free
of trapped surfaces, on a space-like or null configuration whose
future development contains a trapped surface.

DIFFICULTIES

Heuristics ? In the absence of spherical symmetry it is not at
all clear how such a large, uniform distortion can be produced.

Semi-Global. Need to control the MFGHD of an initial data
for a far longer time than that provided by the classical
existence results [Y. C. Bruhat(1952)), Rendall(1990)]
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MAIN RESULTS

THEOREM[[Christ(2008)]. (∃) open set of regular, vacuum, data
whose MGFHD contains a trapped surface.

1 Specify short pulse characteristic data, for which one can
prove a general semi-global result, with detailed control.

2 If, in addition, the data is sufficiently large, uniformly along
all its null geodesic generators, a trapped surface must form.

3 Similar result for data given at past null infinity.
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FORMATION OF TRAPPED SURFACES

THEOREM[ Kl-Luk-Rodnianski(2013)] Result holds true for
non-isotropic data concentrated near one null geodesic generator.

1 Combines all ingredients in Christodoulou’s theorem with a
deformation argument along incoming null hypersurfaces.

2 Reduces to a simple differential inequality on S0,0 = H0 ∩ H0.
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CHARACTERISTIC INITIAL VALUE PROBLEM

Characteristic Data. Ric(g) = 0.

Hypersurfaces H0 ∪ H0 ⊂ R1+3, S0,0 = H0 ∩ H0.

Regular foliations Su ⊂ H0, Su ⊂ H0

Conformal metrics ([γ]u,Su), ([γ]u,Su).

THEOREM[Rendall]. For any given, regular, characteristic initial
data set there exists a unique future development near S0,0.
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CHARACTERISTIC INITIAL VALUE PROBLEM

THEOREM[Rendall]. For any given, regular, characteristic initial
data set there exists a unique, future development near S0,0,
foliated by a double null foliation (u, u).

1 Max. future development D(u∗, u∗), 0 ≤ u ≤ u∗, 0 ≤ u ≤ u∗.

2 Instead of [γ]u, [γ]u one can prescribe the shears χ̂
0
, χ̂0.



FORMATION OF TRAPPED SURFACES

THEOREM[Chr. 2008]. Specify δ-regular initial data on H0 ∪ H0

whose future development D(u∗, δ) contains a trapped surface.

REMARKS.

1 Data trivial on H0, short pulse on H0 = {u = 0, 0 ≤ u ≤ δ},
uniformly distributed in all directions.

2 Trapped surface is of the form S(u∗, δ) = {u = u∗} ∩ {u = δ}.
3 Companion result at past null infinity
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INITIAL DATA

Flat on H0(u = 0).

δ- pulse on H0(u = 0).

Christodoulou’s δ-pulse. χ̂0(u, ω) = δ−1/2h(u/δ, ω).



INITIAL DATA

Definition[Christodoulou’s C (δ,B)-data]∑
i≤5

∑
k≤3

δ
1
2

+k ||∇k
u∇i χ̂0||L∞(H0) ≤ B.

Definition[Kl-Rodn’s KR(δ,B)-data]∑
0≤k≤2

δ1/2‖(δ∇4)k χ̂0‖L2(H0) ≤ B

∑
0≤k≤1

∑
1≤m≤4

δ1/2‖(δ1/2∇)m−1(δ∇4)k ∇χ̂0‖L2(H0) ≤ B

δ1/2‖χ̂0‖L∞(H0) ≤ B
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ISOTROPIC TRAPPING THEOREM

THEOREM[Christ(2008), Kl-Rodn(2010)]

1 Given B > 0, u∗ < 1 there exists δ > 0 sufficiently small such
that if the data verify C (δ,B) or KR(δ,B) ⇒ the maximal
future development contains D(u∗, δ).



ISOTROPIC TRAPPING THEOREM

1 Given B > 0, u∗ < 1, ∃δ > 0 small s.t. if data verify C (δ,B)
or KR(δ,B) ⇒ the maximal future development ⊃ D(u∗, δ).

2 If in addition, M0(ω) :=
∫ δ

0 |χ̂0|2(u′, ω)du′, verifies,

inf
ω∈S0,0

M0(ω) ≥ M∗ > 0,

Then, for any 0 < u∗ < 1, ∃δ = δ(B,M∗) > 0 such that
surface Su∗,δ ⊂ D(u∗, δ) is trapped.

3 A companion result can be proved for formation of scars.
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MAIN IDEAS

1 Based on a continuity argument, one derives detailed
information of all connection coefficients and curvature
components with respect to an adapted null frame.

2 Transport equations

d

du
tr χ = −|χ̂|2 + err(δ)

d

du
|χ̂|2 − 2

r
|χ̂|2 = err(δ)

Show,

tr χ(u, u, ω) =
2

r(u, 0)
− 1

r2(u, 0)

∫ u

0
|χ̂0|2(u′, ω)du′ + O(δ)

Need
2(r0 − u)

r2
0

< inf
ω∈S2

M0(ω) < 2
r0



MAIN IDEAS

1 Based on a continuity argument, one derives detailed
information of all connection coefficients and curvature
components with respect to an adapted null frame.

2 Transport equations

d

du
tr χ = −|χ̂|2 + err(δ)

d

du
|χ̂|2 − 2

r
|χ̂|2 = err(δ)

Show,

tr χ(u, u, ω) =
2

r(u, 0)
− 1

r2(u, 0)

∫ u

0
|χ̂0|2(u′, ω)du′ + O(δ)

Need
2(r0 − u)

r2
0

< inf
ω∈S2

M0(ω) < 2
r0



MAIN IDEAS

1 Based on a continuity argument, one derives detailed
information of all connection coefficients and curvature
components with respect to an adapted null frame.

2 Transport equations

d

du
tr χ = −|χ̂|2 + err(δ)

d

du
|χ̂|2 − 2

r
|χ̂|2 = err(δ)

Show,

tr χ(u, u, ω) =
2

r(u, 0)
− 1

r2(u, 0)

∫ u

0
|χ̂0|2(u′, ω)du′ + O(δ)

Need
2(r0 − u)

r2
0

< inf
ω∈S2

M0(ω) < 2
r0



MAIN IDEAS

1 Based on a continuity argument, one derives detailed
information of all connection coefficients and curvature
components with respect to an adapted null frame.

2 Transport equations

d

du
tr χ = −|χ̂|2 + err(δ)

d

du
|χ̂|2 − 2

r
|χ̂|2 = err(δ)

Show,

tr χ(u, u, ω) =
2

r(u, 0)
− 1

r2(u, 0)

∫ u

0
|χ̂0|2(u′, ω)du′ + O(δ)

Need
2(r0 − u)

r2
0

< inf
ω∈S2

M0(ω) < 2
r0



UN-ISOTROPIC TRAPPING

Theorem[Kl-Luk-Rodn(2013)] Assume C (δ,B). If in addition,

sup
ω∈S0,0

M0(ω) ≥ M∗ > 0.

then, for any, 0 < u∗ < 1, 1− u∗ small, ∃δ = δ(B,M∗) > 0 such
that D(u∗, δ) contains a trapped surface.



MAIN IDEAS

Uses all ingredients in Christodoulou’s theorem combined with
a new deformation argument along Hδ.

Surface u = δ, r = R(ω) [ R ∈ C2(S0) ] is trapped if

1− u∗ < R < 1

−∆R + R−1|∇R|2 + R < 2−1M0

Such functions exist if M0 > 0.

Note that M0 ≡ 0 corresponds to Minkowski space.
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DEFORMED TRAPPED SURFACE



REALITY TESTS

RIGIDITY.
Does the Kerr family K(a,m), 0 ≤ a ≤ m, exhaust all possible,
stationary, asymptotically flat, vacuum black holes ?

STABILITY.

COLLAPSE.



STATIONARY BLACK HOLES

Stationary, asymptotically flat, solutions of the EVE,

Ric(g) = 0.

DEFINITION [External Black Hole]

Asymptoticaly flat, globally hyperbolic, Lorentzian manifold
with boundary (M, g), diffeomorphic to the complement of a
cylinder ⊂ R1+3.

Metric g has an asymptotically timelike, Killing vectorfield T ,

LTg = 0.
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KERR FAMILY K(a,m)

Boyer-Lindquist (t, r , θ, ϕ) coordinates.

−ρ
2∆

Σ2
(dt)2 +

Σ2(sin θ)2

ρ2

(
dϕ− 2amr

Σ2
dt
)2

+
ρ2

∆
(dr)2 + ρ2(dθ)2,


∆ = r2 + a2 − 2mr ;

ρ2 = r2 + a2(cos θ)2;

Σ2 = (r2 + a2)2 − a2(sin θ)2∆.

Stationary. T = ∂t
Axisymmetric. Z = ∂ϕ

Schwarzschild. a = 0,m > 0, static, spherically symmetric.

−∆

r2
(dt)2 +

r2

∆
(dr)2 + r2dσS2
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I. RIGIDITY

RIGIDITY CONJECTURE. Kerr family K(a,m), 0 ≤ a ≤ m,
exhaust all stationary, asymptotically flat, regular vacuum black
holes.

True in the static case. [Israel, Bunting-Masood ul Ulam]

True in the axially symmetric case [Carter-Robinson]

True in general, under an analyticity assumption [Hawking]

True close to a Kerr space-time [Alexakis-Ionescu-Kl]

MAIN IDEAS

Mars-Simon tensor.

Construction of a second symmetry.

Unique continuation, Geometric Carleman estimates.

T-pseudoconvexity
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NEW RIGIDITY RESULT

THEOREM. Assume (M, g) nondegenerate, regular, black hole
with a stationary Killing v-field T and ‖g(T,T)‖L∞(S0) small.

⇒ (M, g) is stationary, axially symmetric, hence a K(a,m) with
small a.

MAIN STEPS
1 (M, g) admits a a second rotational Killing vector-field Z

which commutes with T, in a small neighborhood Ω of the
horizon.

2 If ‖g(T,T)‖L∞(S0) sufficiently small ⇒ T is strictly time-like
in the complement of Ω.



T BECOMES TIMELIKE !

Assume. Maximal hypersurface Σ0, passing through bifurcate
sphere S0. Decompose T,

T = nT0 + X , g(T,T) = −n2 + |X |2

∇iXj +∇jXi = 2nkij .

∆n = |k |2n,

Remark. n|S0 = 0, n = 1 at infinity.



Main Ideas

∇iXj +∇jXi = 2nkij .

∆n = |k |2n,

Step 1. By Hopf Lemma ν(n) > 0 in a quantitative fashion.
Step 2.

∫
Σ0

n|k|2 is small.

Integrate the identity n|k |2 = k ijnkij = ∇iX jkij = ∇i (X jkij).

Step 3. Use Steps 1,2 to show that k is uniformly small. Step 4.

Show, by a propagation argument, that X remains small. Step 5.

Deduce that T becomes strictly time-like away from a small
neighborhood of S0.



LOCAL RIGIDITY

Theorem[Ionescu-K(2011)]

(M, g) Ricci flat, pseudo-riemannian manifold; (O,Z ) verify:

A1 Z Killing v-field in O,

A2 ∂O is strongly pseudo-convex at p ∈ ∂O

⇒ Z extends as a Killing vector-field to a neighborhood of p.

Pseudo-convexity

O ⊂M is strongly pseudo-convex at p ∈ ∂O if it admits defining
function f at p, s.t. for any X 6= 0 ∈ Tp(M), X (f )(p) = 0 and
g(X ,X ) = 0, we have

D2f (X ,X )(p) < 0.
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