


HYPERBOLOIDAL EVOLUTION AND APPLICATIONS

ANIL ZENGINOĞLU

For his pictures, blue is null, red is timelike and green is spacelike.
Hyperboloidal slide: It is easier to take one hyperboloid and then shift along

the Killing field, like the 2nd picture.
Wave equations slide: In Penrose diagrams, it becomes clear that energy from

radiation is in any slice of an AF slicing, but it eventually leaves a AH slicing.
Blow-up (b < 0) slide: See figure 1: If taking an AF foliation, we see blow up

at origin. If a hyperboloidal foliation, and steeper than the blowup profile, we
see it at infinity. If the hyperboloidal foliation is at just the right steepness, you
can get blowup everywhere on a slice.

Does this method work for elliptic equations (for GR)? It seems to work well
for the CMC foliation formulation of the Einstein equations, but not so well for
free evolution formulation right now.
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Overview

Introduction
Hyperboloidal surfaces

Advantages
Energy decay; Outer boundary; Asymptotic solution; Negative cost

Cubic wave equation

Scalar Green functions

Quasi-normal modes
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Hyperboloidal evolution

Dirac (1949) distinguishes three "forms" of quantum field theory:
instant (Cauchy), light front (characteristic), and point (hyperboloidal).
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Hyperboloidal evolution

Dirac (1949) distinguishes three "forms" of quantum field theory:
instant (Cauchy), light front (characteristic), and point (hyperboloidal).

i-

i+

i0

J +

J -

i-

i+

i0

J +

J -

i-

i+

i0

J +

J -



Introduction Advantages Cubic wave equation Scalar Green functions Quasi-normal modes

Hyperboloidal surfaces

In a spacetime with metric gµν and coordinates xµ a hyperboloid is defined by

−gµνxµxν = τ 2, τ 6= 0

In two dimensional flat spacetime with coordinates (t, x)

t2 − x2 = τ 2.
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Hyperboloids to Lorentzian geometry are like spheres to Riemannian geometry.
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Hyperboloidal surfaces

A surface is called hyperboloidal (Friedrich 1983) iff
• it is spacelike, and
• it approaches null infinity.

t2−x2 = τ 2 ⇒ ∂t =

√
τ 2 + x2

τ
∂τ .
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Hyperboloidal surfaces

A surface is called hyperboloidal (Friedrich 1983) iff
• it is spacelike, and
• it approaches null infinity.

(t − τ)2 − x2 = 1 ⇒ ∂t = ∂τ .
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Wave equations

Consider the semi-linear wave equation

(−∂2t + ∆x )u(t, x)± |u(t, x)|p−1u(t, x) = 0, x ∈ R3.

Two properties that seem to contradict intuition:
• Time-reversibility: t → −t is a symmetry.
• Conservation of energy: ∂tE(u) = 0 with

E(u) =

∫ ∞
0

1
2

(
(∂tu)2 + |∇xu|2 ±

1
p + 1u

p+1
)
dx .
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Wave equations

Compare Penrose diagrams
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Wave equations

As an example for a hyperboloidal foliation,
consider the Kelvin inversion

xµ = − Xµ

XνXν
,

t = − T
T 2 − |X |2 , x

i =
X i

T 2 − |X |2 .

The domain is |X | < −T , T ∈ (−∞, 0).
i-

i+

i0

J +

J -

The wave equation utt − urr = 0 becomes uTT − uRR = 0. The energy

E(u) =

∫ −T

0

1
2
(
uT (T ,R)2 + uR (T ,R)2

)
dR ,

decays in time

∂E
∂T = −1

2 (uT (T ,−T )− uR (T ,−T ))2 ≤ 0 .
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Numerical calculations

Maxwell equations

Electromagnetic scattering off a plane
(Andreas Kloeckner, Courant Institute).

Seismic wave equation.

1994 Northridge Earthquake
(Quake Project, Carnegie Mellon).



Introduction Advantages Cubic wave equation Scalar Green functions Quasi-normal modes

The outer boundary problem

To solve the initial value problem numerically, one truncates the unbounded
domain because: “Compactification is not compatible with hyperbolic PDEs."

The resulting artificial outer boundary is not part of the physical problem. To
make sure that the truncated solution approximates the original solution:

• The boundary conditions must lead to a well-posed initial boundary value
problem, and possibly preserve constraints.

• The boundary data must be transparent to physics.
• The numerical implementation should be stable, accurate, and efficient.

⇒ Extensive research for many decades
• ABC: Absorbing boundary conditions (Engquist–Majda 1977).
• PML: Perfectly matched layer (Bérenger 1994).
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The compactification problem

Compactification refers to the mapping of an infinite physical domain to a finite
computational domain by a coordinate transformation. For example, consider

ρ =
x

1 + x , x =
ρ

1− ρ ≡
ρ

Ω
.

The compactifying coordinate ρ maps the infinitely extended domain [0,∞)
onto the bounded domain [0, 1).

The function Ω(ρ) vanishes at infinity with non-vanishing gradient.
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The compactification problem

Consider the outgoing sine-wave solution

u(t, x) = sin(x − t).

at t = 0 we have

u(0, x) = sin x .
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r
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u0 = sin (ρ/Ω) .

Infinite oscillations cannot be resolved on
a finite domain.
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The compactification problem

Consider the advection equation

∂tu + ∂xu = 0

Characteristics leave the domain
through a timelike boundary.

x

t

Compactification leads to

∂tu + Ω2 ∂ρu = 0 .

Characteristics are trapped.

Ρ

t
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Solution: Hyperboloidal compactification

Introduce a new time coordinate τ in addition to compactification such that
the outgoing characteristic has the same form in compactifying coordinates.

t − x = τ − ρ .
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Henceforth space by itself, and time by itself,
are doomed to fade away into mere shadows,
and only a kind of union of the two will preserve
an independent reality.

Hermann Minkowski 1908
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Hyperboloidal compactification

To avoid loss of resolution near the domain boundaries, introduce τ such that

τ − ρ = t − x

Given ρ, the above relation defines the time function τ .
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Advection equation

The Jacobian of the hyperboloidal compactification reads

∂τ = ∂t , ∂x = (−1 + Ω2)∂τ + Ω2 ∂ρ .

The advection equation transforms as ∂tu + ∂xu = Ω2 (∂τu + ∂ρu). We get

∂tu + ∂xu = 0 ⇒ ∂τu + ∂ρu = 0.

The equation is the same but the meaning of the coordinates is different.
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Wave equation

The wave equation in x ∈ (−∞,∞) becomes in ρ ∈ [−1, 1]

−(1 + H)∂2τu − 2H∂τ∂ρu + Ω2∂2ρu + 2Ω ∂ρΩ(∂τ + ∂ρ)u = 0 ,

where H(ρ) is a function that satisfies H(±1) = ±1.

We get at infinity

∂τ (∂τu ± ∂ρu) = 0 .

There are no incoming characteristics
into the computational domain.

x

t

2txu = 0
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Wave equation

The wave equation in x ∈ (−∞,∞) becomes in ρ ∈ [−1, 1]

−(1 + H)∂2τu − 2H∂τ∂ρu + Ω2∂2ρu + 2Ω ∂ρΩ(∂τ + ∂ρ)u = 0 ,

where H(ρ) is a function that satisfies H(±1) = ±1.

We get at infinity

∂τ (∂τu ± ∂ρu) = 0 .

There are no incoming characteristics
into the computational domain.
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Penrose diagrams

Hyperboloidal compactification and the resulting characteristic structure can be
visualized in a Penrose diagram.
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Penrose diagrams

Hyperboloidal compactification and the resulting characteristic structure can be
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Summary

Hyperboloidal compactification
• makes energy decay explicit,
• avoids contamination by artificial boundary conditions,
• provides the unbounded domain solution,
• at negative cost (computational efficiency factors 100–5000).

Disadvantages:
• Equations “look" more complicated (no unitary evolution).
• No access to spatial infinity (solutions are semi-global).
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The focusing cubic wave equation

Piotr Bizoń and AZ, Nonlinearity 2009.

Consider the semilinear wave equation in Minkowski spacetime with a focusing
cubic nonlinearity,

∂ttv −∆v = v 3 .

• Global existence for small data:
Decay as t−2 near i+, as t−1 along I + as t →∞.

Christodoulou 1986

• Blowup for large data:
The blowup mechanism is ODE-blowup.

∂ttv = v 3, v(T ) =∞ → v =

√
2

T − t .

Merle & Zaag 2005, Donninger & Schörkhuber 2012.
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The symmetry orbit

The cubic wave equation admits the following symmetries
• time translation, Ta : v(t, r) → v(t + a, r)

• conformal inversion, I : v(t, r) → 1
t2−r2 v

( t
r2−t2 ,

r
t2−r2

)
,

• reflection, v → −v .

The symmetry orbit of the solution ±
√
2/t is obtained from TaITb

±v(a,b)(t, r) = ±
√
2

t + a + b ((t + a)2 − r 2)
.

Conjecture: This two parameter family of solutions acts as a local attractor for
a large set of spherically symmetric data.

The sign of b determines the nature of solution (decay, blow-up, criticality).
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Decay (b > 0)

Convergence to the attractor is expected beyond the evolution of initial data.
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Decay (b > 0)

Linear stability analysis indicates

vgeneric − v(a,b) =
C
t4 +O(t−5) .
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Blow-up (b < 0)

The blow-up profile is a hyperboloidal surface given by

t =

(
1

2|b| − a
)

+

√
1
4b2 + r 2.

In this work, we used hyperboloidal coordinates defined through

t = τ +
√

1 + r 2 .

Simultaneous blowup on each
grid point for b = − 1

2 .
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The critical solution (b = 0)

We expect the critical solution to be v0(t, x) =

√
2
t .

The field at null infinity for the critical solution is
√
2.
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blue curves, ±10−8 for green curves.
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Nondispersive decay

Roland Donninger and AZ, Analysis & PDE 2014.

Theorem
There exists a co-dimension 4 Lipschitz manifoldM of functions in
H1(Σ−1)× L2(Σ−1) with (0, 0) ∈M such that the following holds. For data
(f , g) ∈M the hyperboloidal initial value problem{

(−∂2t + ∆x )v(t, x) + v(t, x)3 = 0
v |Σ−1 = v0|Σ−1 + f
∇nv |Σ−1 = ∇nv0|Σ−1 + g

has a unique solution v defined on D+(Σ−1) such that

|T |
1
2
(
‖v − v0‖H1(ΣT ) + ‖∇nv −∇nv0‖L2(ΣT )

)
. |T |

1
2−

for all T ∈ [−1, 0). As a consequence, for any δ ∈ (0, 1), we have

‖v − v0‖L4(t,2t)L4(B(1−δ)t ) . t−
1
2 +

as t →∞, i.e., v converges to v0 in a localized Strichartz sense.
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The hyperboloidal initial value problem

The hyperboloidal surfaces ΣT are defined via

ΣT :=

{
(t, x) ∈ R× R3 : t = − 1

2T +

√
1

4T 2 + |x |2
}
, where T ∈ (−∞, 0) .

The transformation (t, x) 7→ (T ,X)

T = − t
t2 − |x |2 , X =

x
t2 − |x |2

maps the forward lightcone {|x | < t, t > 0} to
the backward lightcone {|X | < −T ,T < 0},
and t →∞ translates into T → 0−.

The problem translates into the stability of the
blow-up solution in the backward lightcone of
the origin (Donninger & Schörkhuber 2012).
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The Green function as the fundamental solution

AZ and Chad Galley, Physical Review D 2012.

Given a linear partial differential equation, its Green function (fundamental
solution) provides a complete description.

For example, the Green function for the scalar wave operator 2 satisfies

2G(x , x ′) = δ4(x − x ′)

with appropriate boundary conditions. The inhomogeneous equation

2φ(x) = S(x),

can be solved via the Green function by a simple convolution

φ(x) =

∫
G(x , x ′)S(x ′)d4x ′,

A similar procedure applies to non-vanishing initial data.
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Features of curved spacetime Green functions

There are three main features that make the construction of a curved
spacetime Green function a difficult problem:

1. Backscatter off curvature propagates within the lightcone.
2. Light cone intersects itself along caustics.
3. A source encounters its own echoes due to trapping at the photon sphere.

There has been considerable effort to construct the retarded Green function
through matched asymptotic expansions (Anderson, Flanagan, Hu, Ottewill,
Poisson, Wiseman 1999–2005), but the problem remained unsolved.
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Global evolution of local perturbations

An approximation to the Green function can be obtained numerically by solving

2φσ(x ; x ′) =
1

(
√
2πσ)4

exp
[
− (x − x ′)2

2σ2

]
with a finite σ. This is a problem with three scales:

• The scale of the Gaussian σ.
• The scale of the black hole M.
• The scale of the ideal observer ∞.

This is a multi scale problem (computational high frequency wave
propagation). Hyperboloidal compactification solves the large scale.



Introduction Advantages Cubic wave equation Scalar Green functions Quasi-normal modes

The simulation

For the simulations we used SpEC on an infinite domain.

The evolution for a nonrotating black hole.

http://www.youtube.com/watch?v=Pe8sRjqtldQ&hd=1
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Arrival times

Infinitely many null geodesics
connect the source and the
observer due to trapping at the
photon sphere.

N = 3

N = 1 N = 1

N = 2

N = 0

� �

The arrival times of the echoes
agree with revolution around the
photon sphere.

Tfull = 2π
√
27M ≈ 32.648M.
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Exponential decay

The amplitude decays with
the Lyapunov exponent of the
unstable null geodesics.

λ =
1

2
√
27M

≈ 0.096M−1.
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Profiles and the four-fold structure (Ori 2009)

Each caustic passage induces a shift
of π/2 in the profile of the signal.

This effect has been known as the
Gouy phase shift (1890) in optics,
or as the Hilbert transform in signal
processing.

The recently discovered four-fold
structure has a simple explanation:
trapping at the photon sphere and
Hilbert transform through caustics.
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Rotating black holes

The metric includes an additional parameter a, called specific angular
momentum. New features are observed in a rotating black hole spacetime:

• Frame dragging (Lense–Thirring effect).
• Trapping along spherical photon orbits.
• Singularity structure (?).
• Superradiance (?).
• Extremal case (?).

http://www.youtube.com/watch?v=iEA31IL1mFI&hd=1
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Possible astrophysical implications (Kocsis 2013)

Ground-based GW detectors will not be sensitive to supermassive black holes
because the characteristic frequencies are below the sensitivity bands.

However, GW echoes of inspiraling stellar mass binaries could be measurable.
These would come with a delay of a few minutes to hours in galactic nuclei.

The lensed primary signal and GW echo would be amplified if the binary is
within a narrow cone behind the supermassive black hole.

⇒ Numerical study of a mathematical question could expand the science goal
of ground-based GW detectors.
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Quasinormal modes along hyperboloidal slices (Schmidt 1993)

AZ, Physical Review D 2011.

Schwarzschild slices extend between bifurcation sphere and spatial infinity, but
• an astrophysical black hole does not possess a bifurcation sphere, and
• idealized observers of radiation are not at spatial infinity.

Perform computations along spacelike sur-
faces that extend between the future event
horizon (horizon-penetrating) and future
null infinity (hyperboloidal).

See also talk by Piotr and Warnick 2013.
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Quasinormal modes along hyperboloidal slices (Schmidt 1993)

AZ, Physical Review D 2011.

Schwarzschild slices extend between bifurcation sphere and spatial infinity, but
• an astrophysical black hole does not possess a bifurcation sphere, and
• idealized observers of radiation are not at spatial infinity.

Perform computations along spacelike sur-
faces that extend between the future event
horizon (horizon-penetrating) and future
null infinity (hyperboloidal).
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Regge–Wheeler equation

Odd-parity gravitational perturbations Ψ satisfy the Regge–Wheeler equation[
d2

dr 2∗
+ ω2 − U

]
Ψ = 0, where f = 1− 2M

r , U =
f
r 2
(
`(`+ 1)− 6M

r

)
.

Solutions have the asymptotic behavior

Ψ→ C1e iωr∗ + C2e−iωr∗ as r∗ → ±∞.

The QNM eigenfunctions blow up near the black hole and at infinity.

⇒ The representation of physical boundary conditions becomes unphysical!
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Horizon-penetrating, hyperboloidal time functions

Introduce a new time function τ by

τ = t − h(r∗), with lim
r∗→±∞

h = ±r∗ .

The time transformation amounts to a rescaling

Ψ = e iωhψ .

The transformed equation becomes an advection-diffusion-reaction equation(
d2

dr 2∗
+ 2iωh′ ddr∗

+ ω2(1− h′2) + iωh′′ − U
)
ψ = 0.

The asymptotic behavior is regular

ψ → C1 + C2e∓2iωr∗ as r∗ → ±∞.

This framework leads to efficient numerical computations in time domain.
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Hyperboloidal evolution in extremal Kerr spacetimes

H Yang, A Zimmerman, AZ, F Zhang, E Berti, Y Chen, Physical Review D 2013.

The collective excitation of many weakly damped overtones results in a
perturbation that decays as 1/t (Glampedakis & Anderson 2001).

The asymptotic scalar field behaves as

Φ22(t; ε) ≈
√
ε

e−
√
ε/8t

1− e−
√
ε/2t

, where ε ≡ 1− a .
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Summary

Introduction
Hyperboloidal surfaces

Advantages
Energy decay; Outer boundary; Asymptotic solution; Negative cost

Cubic wave equation

Scalar Green functions

Quasi-normal modes
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Thank You!
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