


THE RESOLUTION OF THE BOUNDED L2 CURVATURE
CONJECTURE IN GENERAL RELATIVITY

JEREMIE SZEFTEL

Cauchy Problem for EE slide: Dimension of M is 4 and g is (−+ ++).
Ex: (R1+3,m) where m = −(dt)2 + (dx1)2 + (dx2)2 + (dx3)2.
See figure 1.
The bounded L2 curvature theorem slide: The H2+ε regularity is optimal for

general quasilinear wave equations. Special properties of the Einstein equations
are used to get the H2 for this result.

“Invariant” here means coordinate invariant.
Strategy of the proof slide: We want �gφ = Q(φ, φ), with Q to have a specific

structure, called null structure. For instance, �φ = (φt)
2 does not have null

structure. However, Qij(φ, ψ) = ∂iφ∂jψ − ∂iψ∂jφ does have this structure.
For step B: If I want to control this, I could use something like

‖∂φ∂φ‖L2(M) ≤ ‖∂φ‖L∞
t L2(Σt)‖∂φ‖L∞

t L2(Σt),

but this does not exploit the structure of the quadratic form, so it must be the
wrong one to use here. (Here Σ+ is the foliation.)

Building a parametrix slide: We have �gφ = 0 and φΣ0 = φ0 and Tφ|Σ0 = φ1.
Step C: construction and control of the parametrix slide: In the flat case:

u± = ±t+ x.ω and

f±(λω) =
1

2

(
φ̂−(λω)∓ i

λ
φ̂1(λω)

)
.

Next slide: If we differentiate the eikonal equation twice, we get a curvature
term. If we do, we get it in L2. Thus we can’t do more derivatives. But what
about ω? We only get a limited number of derivatives with respect to ω, unfor-
tunately, otherwise it’d be much easier.

Third bullet on that slide: We will prescribe the leaves of Σ0 as in figure 2.
Also see figure 3, and we need to prescribe that trχ ∈ L∞ along this foliation. If
we foliate by solutions of minimal surface equation, it doesn’t quite work, since it
doesn’t know about normal directions. But something related to mean curvature
flow works to get this.

Fourth: Why do we need the lower bound on injectivity radius? The method
of characteristics fails where null geodesics cross as in figure 4, which this lower
bound controls.

In other dimensions, would expect you would need 1/2 derivative more.
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Cauchy Problem for EE

(M,g) Lorentzian, R curvature tensor of g

Einstein Vacuum equations: Ricαβ = 0

Wave coordinates: �gx
α = 1√

|g|
∂β(gβγ

√
|g|∂γ)xα = 0, α = 0, 1, 2, 3

�ggαβ = Nαβ(g, ∂g), α, β = 0, 1, 2, 3, with Nαβ quadratic w.r.t ∂g

Cauchy data: (Σ0, g0, k) where Σ0 = {t = 0}, g(0, .) = g0,
∂tg(0, .) = k

Question: Under which regularity do we have local existence for EE?
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The bounded L2 curvature theorem

Theorem [KRS (2012)]: Let (Σ0, g0, k) with R ∈ L2(Σ0) and
∇k ∈ L2(Σ0). Then, EE are WP

Motivations:

• First WP result for a quasilinear wave equation below H2+ε, and
first to exploit the full nonlinear structure of the equation

• The assumptions R ∈ L2(Σ0), ∇k ∈ L2(Σ0) are invariant

• Rather than a WP result, it can be viewed as a breakdown
criterion. In particular, R ∈ L2 is a fundamental quantity
controlling singularity formation

• There is some criticality in this problem: the control of the
Eikonal equation gαβ∂αu∂βu = 0 requires R ∈ L2
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Strategy of the proof

A Recast the EE as a quasilinear Yang-Mills theory

B Prove appropriate bilinear estimates for solutions to �gφ = 0

C Construct a parametrix for �gφ = 0, and obtain the control of
the parametrix

D Prove a sharp L4(M) Strichartz estimate for the parametrix

Achieve Steps B, C and D only assuming L2 bounds on R

This requires to exploit the full structure of the Einstein equations
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Step A: EE as a quasilinear Yang-Mills theory

Let eα an orthonormal frame onM, i.e. g(eα, eβ) = mαβ

Let (Aµ)αβ := (A)αβ(∂µ) = g(Dµeβ , eα)

R(eα, eβ , ∂µ, ∂ν) = ∂µ(Aν)αβ − ∂ν(Aµ)αβ+(Aν)α
λ(Aµ)λβ−(Aµ)α

λ(Aν)λβ

DµRαβµν = 0 (consequence of Bianchi identities + EE)

(�gA)ν −Dν(DµAµ) = Dµ([Aµ,Aν ]) + [Aµ,DµAν −DνAµ] + A3

We choose the Coulomb gauge ∇jAj = 0

We need a procedure to scalarize the tensorial wave equation and to
project on divergence free vectorfields without destroying the null
strucure
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Step B: the bilinear and trilinear estimates

We need to control scalar functions φ solutions of

�g(φ) = null forms + l.o.t

⇒ control the energy estimate + prove bilinear estimates

To prove these bilinear estimates in a quasilinear setting:

• write φ by iterating the basic parametrix of step C (construction
and control of the parametrix)

• Rethink the proof of bilinear estimates in the quasilinear setting

• Prove a sharp L4(M) Strichartz estimate (step D)

• prove a trilinear estimate to control the energy estimate
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Building a parametrix for �g(φ) = 0

Let a plane wave eiλu(t,x,ω) with λ ∈ [0,+∞) and ω ∈ S2 parameters
corresponding to Fourier variables in R3 in spherical coordinates

�g(eiλu) =
(
− λ2gαβ∂αu∂βu+ iλ�gu

)
eiλu

For u a solution of the Eikonal equation gαβ∂αu∂βu = 0, we have:

�g(eiλu) = iλ�gue
iλu

This yields in general an approximate solution to �g(φ) = 0. We
then superpose these plane waves to generate any initial data
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Step C: construction and control of the parametrix

S(t, x) =
∑
±

∫
S2

∫ +∞

0

eiλu±(t,x,ω)f±(λω)λ2dλdω

where gαβ∂αu±∂βu± = 0 onM such that u±(0, x, ω) ∼ x.ω when
|x| → +∞ on Σ0

Construction: for any (φ0, φ1) there exists f± such that

S(0, .) = φ0, TS(0, .) = φ1 and ‖λf±‖L2(R3) . ‖∇φ0‖L2(Σ0) + ‖φ1‖L2(Σ0)

E(t, x) = �gS(t, x) = i
∑
±

∫
S2

∫ +∞

0

eiλu±(t,x,ω)�gu±(t, x, ω)f±(λω)λ3dλdω

Control of the error term: ‖E‖L2(M) . ‖λf+‖L2(R3) + ‖λf−‖L2(R3)
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Step C: construction and control of the parametrix

• Goal: Achieve Step C only assuming L2 bounds on R. This
requires to exploit the full structure of Einstein equations

• The regularity in ω of u± obtained in Step C is limited

• A careful choice of u±(0, x, ω) (related to the mean curvature
flow) allows us to "squeeze" as much regularity in x and ω as
possible

• R ∈ L2 is minimal to obtain a lower bound on the radius of
injectivity of level surfaces of the phase u±

• Step C requires L2 bounds for Fourier integral operators, and in
turn several integration by parts. Classical proofs (TT ∗ and T ∗T
arguments) would fail by far
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