


BLACK HOLE STABILITY BACKWARDS AND FORWARDS

MIHALIS DAFERMOS

Slide 4: See figure 1. The initial data is either 2 ended or enters a trapped
region. One problem is we don’t know which Kerr family we’ll approach. Also,
the past of future null infinity is the only part we expect to be stable, and we
don’t even know what that is a priori.

Slide 6: See figure 2. We can ask, are there even any spacetimes that have
this expected picture? Yes. We can think of H+ and I+ as intersecting null
hypersurfaces and hope to solve backwards. The theorem on the slide essentially
says we can. We can solve backwards to some “initial” hyperboloidal slice.

Slide 12: We probably noticed that even in the poor man’s linearization, we
already have instability at the extremal case, but in our backwards problem we
allowed it. This mystery will be discussed.

Slide 22: Why don’t we see the nearby Kerr or Schwarzschild metrics when
we perturb Minkowski? Because, in the appropriate Christodoulou-Klainerman
norm, they aren’t close.

Slide 25: See figure 3: Let this be Schwarzschild. The theorem essentially says
that if I have finite energy on the null boundaries, then get a unique initial data
set.

Slide 26: The reason the forward map fails in Kerr is essentially because ∂t
becomes spacelike.

Slide 27: We need the exponential decay to kill the blue shift so that we get
finite energy with respect to N near the horizon for the “initial” data when we
solve backwards.

Slide 32: Having a scattering theory near future null infinity would already
force exponential decay of energy along future null infinity.

Slide 34: In reality, we really set up finite initial data, solve backwards and
then take limit to future null infinity in some sense. Also, we get a uniqueness
result in the class of data that exponentially decays, appropriately formulated.

Slide 35: The kind of singularity on H+ will be a weak null singularity; see
Luk’s talk on Friday.

In the extremal case, do you still need exponential decay to get this result?
The paper conjectures that you could prove that you only need polynomial decay
to prove it. You lose blue-shift in the extremal case, which should make it easier.

You could find naked singularities by doing something like this, but you can’t
get generic solutions by this.
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Outline

1. The forward problem: The non-linear stability of Kerr

conjecture

2. The backwards problem: Construction of dynamical black holes

from scattering data

3. The difficulties and status of the forward problem

4. Proof and lessons from the backwards scattering problem
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1. The forward problem: The non-linear stability of Kerr

conjecture
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Perturbations of a (subextremal) Kerr metric should remain close to and

dynamically approach the Kerr family in the exterior-to-the-black-hole region.

Conjecture (Stability of Kerr). Let (Σ, ḡ,K) be a vacuum initial data set

sufficiently close to the initial data on a Cauchy hypersurface in the Kerr

solution (M, gMi,ai
) for some subextremal parameters 0 ≤ ∣ai∣ <Mi. Then the

maximal Cauchy development (M, g) of the data under evolution by the

vacuum equations

Ric(g) = 0

possesses a complete null infinity I+ such that the metric restricted to J−(I+)

remains close to for all time and asymptotically approaches a Kerr solution

(M, gMf ,af
) in a uniform way with quantitative decay rates, where ∣af ∣ <Mf

are near ai, Mi respectively.

Note: ai = 0 will not imply that af = 0!
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2. The backwards problem: Construction of dynamical

black holes from scattering data

MSRI, November 19, 2013 5



Black hole stability backwards and forwards

Theorem (M.D., G. Holzegel, I. Rodnianski). Given suitable smooth

scattering “data” on the horizon H+ and future null infinity I+, asymptoting to

the induced Kerr geometry with parameters ∣a∣ ≤M , then there exists a

corresponding smooth vacuum black hole spacetime asymptotically approaching

in its exterior region the Kerr solution with parameters a and M .

Corollary. There exist dynamic vacuum black hole spacetimes with no

algebraic or geometric symmetries which assymptotically settle down to Kerr.
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Remarks on the statement

1. The set of solutions is parametrized by “a full set” of scattering data.

Thus, the class of solutions is “large” in this sense.

2. The assumptions of the theorem will require however that the scattering

data decay exponentially along H+, I+. This is in contrast to the expected

behaviour of the “generic” solution of the forward problem, where decay

along H+ and I+ is expected to be inverse polynomial.

3. Nonetheless, for reasons we shall see, the restriction to exponentially

decaying data along H+ and I+ is expected to be necessary for the type of

formulation as in the Theorem.
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3. The difficulties and status of the forward problem
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The difficulties of the stability problem can be seen to enter at three levels:

3.1. The “poor man’s” linearisation: 2gψ = 0.

3.2. The equations of linearised gravity.

3.3 The nonlinear Einstein equations.
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3.1 The poor man’s linearisation: 2gψ = 0 on Kerr
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Classical work: Wald 1979, Kay–Wald 1986

Completely solved after intense work in the past 10 years!

. . .Andersson–Blue, Aretakis, M.D.–Rodnianski, Luk, Schlue,

Shlapentokh-Rothman, Tataru–Tohaneanu

Analogue for Λ ≠ 0 (in the very slowly rotating case):

Bony–Häfner, M.D.–Rodnianski, Dyatlov, Holzegel,

Holzegel–Warnick, Holzegel–Smulevici, Vasy, Warnick
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Phenomena

1. Red-shift

2. Superradiance

3. Trapped null geodesics

4. “Low frequency” obstructions

5. Phenomena 1.–4. are strongly coupled as ∣a∣→M .

In fact, the stability result breaks down exactly at ∣a∣ =M . (Aretakis).
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The red-shift

The redshift is classically understood in the geometric optics approximation in

terms of signals sent and received by two observers A and B, respectively.

H
+

I
+

A

B

Depends on positivity of surface gravity.

The red-shift is a stability mechanism!

Extremal case a =M : The red-shift factor at the horizon vanishes.
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3.2 The equations of linearised gravity.
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When one linearises the Einstein equations around the trivial solution

Minkowski space, say in harmonic coordinates, then each linearised metric

component indeed satisfies

2gh
µν = 0. (1)

When one linearises however, around a nontrivial solution like Kerr, the

linearised system has highly non-trivial tensorial structure. This gives rise to

additional difficulties not present in (1).
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New difficulties:

1. Lagrangian structure nonstandard, thus a priori, not clear that there is a

conserved or otherwise controlled coercive energy, even in Schwarzschild

where ∂t is causal.

2. Not all degrees of freedom decay, for in particular, linearisation must see

nearby Kerr’s.

The first problem is by far the biggest.

The second problem already arises in easier problems like wave equation with

potential or Maxwell (cf. Blue, Sterbenz–Tataru).
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Theorem (M.D.–Holzegel–Rodnianski). Schwarzschild is linearly stable

to gravitational perturbations:

Solutions of the above system of linearised gravity around Schwarzschild decay

polynomially to a solution of linearised Kerr.

See Holzegel’s talk on Friday.
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3.3 The nonlinear Einstein equations

MSRI, November 19, 2013 21



Black hole stability backwards and forwards

The difficulties entering at the level of the nonlinearity include of course the

familiar difficulties which are already manifest in stability of Minkowski space

(Christodoulou–Klainerman).

1. Quadratic nonlinearities in derivatives of the metric, plus quasilinearity.

Need special structure to ensure even local existence at I+.

2. To uncover this structure, need to introduce an elaborate gauge, where

wave equations for curvature are coupled with transport and elliptic

equations for the connection.

In view, moreover, of the additional difficulties described previously, we could

add:

3. How do these difficulties interact with the difficulties of 3.1–3.2?

(Holzegel 2010)

4. How does one pick the final parameters a, M?
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4. Proof and lessons from the backwards scattering

problem
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4.1 The scalar wave equation 2gψ = 0
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Dimock-Kay scattering theory for 2gψ = 0 on Schwarzschild

Recall the Killing field ∂t in Schwarzschild.

Let X0 denote the space of finite energy flux with respect to ∂t on a slice t = 0

of the exterior.

Let XI+ denote the space of finite asymptotic energy flux with respect to ∂t on

I+.

Let XH+ denote the space of finite energy flux with respect to ∂t on H
+. Note

that this is highly degenerate!

Then we have:

Theorem (Dimock–Kay 1985). The map X0 → XI+ ⊕XH+ defined by solving

the forward problem and “restricting” to H+ and I+ is in fact an isomorphism.

See also Bachelot.
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This scattering theory, however, unfortunately does not go very far!

On Kerr, the forward map

X0 → XI+ ⊕XH+

is not even well defined.

Uniform boundedness is only known for solutions with finite non-degenerate

positive definite energy.

This is the energy associated with the vector field N related to the red-shift

estimate.

Thus the ∂t-scattering theory is inappropriate even for the scalar wave

equation!
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N-energy scattering theory for 2ψ = 0 on Schwarzschild/Kerr

The red-shift is now a blue-shift.

H
+

I
+

A

B

This means that one must impose exponential decay along H+ and I+.
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Once one accepts this obstruction, and imposes such data, then the scattering

problem for 2gψ = 0 becomes very easy!

One just needs to show that solutions grow at most exponentially when solving

backwards. For this, one need only apply the energy identity for N , and

Gronwall.

In particular, the difficult of trapped null geodesics, so painful for the forward

problem, does not appear.
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4.2 Linearised gravity
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Recall the characteristic new difficulties in passing from the scalar problem to

linearised gravity.

In some sense, the first difficulty (lack of a conserved energy) is not relevant

since we are imposing exponential decay and dealing with the N -energy.

On the other hand, the second difficulty remains. Not all degrees of freedom

decay, and we need to prevent the non-decaying degrees of freedom from being

infinitely blue-shifted.

Thus, one must still understand how to “separate out” the degrees of freedom

which decay from those that don’t, without destroying the structure of the

equations.
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4.3 The nonlinear vacuum Einstein equations
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Again, recall the difficulties described in the forward problem.

We still have difficulties 1.–3.

(Note that, the blue-shift aside, difficulty 1. again would exclude a scattering

theory based solely on the finiteness of the ∂t flux on null infinity I+. Even to

solve locally around null infinity, one must take weighted estimates, and this

will require also decay along null infinity, though this obstruction will only be

polynomial.)
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One slide summary of the proof

We introduce a systematic formulation of a set of

• “renormalised” spin coefficients “Γ”, and

• curvature coefficients “ψ”

such that Γ = ψ = 0 for Kerr (cf. the system used for linearised gravity). These

are defined with respect to a null frame adapted to a double null foliation.

The ψ satisfy Bianchi-type equations (hyperbolic) and Γ transport and elliptic

equations. The structure of the system is preserved by commutation with

respect to an appropriate set of commutation vector fields.

We apply energy estimates to ψ associated with N and with a new hierarchy of

weighted vector fields near I+ capturing peeling. We apply transport estimates

to control Γ. The weighted hierarchy also captures the “null condition”.

Ô⇒ these weighted energies grow at most exponentially when solving

backwards.
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Some technical details

Ambient differential structure.

Approximation by a finite problem.

Prescription of data on null hypersurfaces. Constraints. (See

Christodoulou).

Limit to null infinity. (See Christodoulou)

Well posedness and inherent loss of derivatives of characteristic initial value

problem. (Rendall, Muller Zum Hagen, Christodoulou)

Differences of solutions.
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Conjecture. Consider scattering data which decays inverse polynomially along

I+ and H+. Then one can attach a development spacetime (M, g), but, for

generic such scattering data, H+ will be singular in the transverse directions.

cf. Robinson–Trautman spacetimes

This conjecture should not be interpreted as suggesting that generic solutions

of the forward problem cannot have polynomial decay! Rather, that one cannot

“spot” the solutions of the forward problem arising from smooth data just by

looking at the decay on I+ and H+.

Kerr-de Sitter? Here, a pure harmonic coordinate approach could work.

cf. also parametrizing solutions from scattering data for asymptotically pure de

Sitter (H. Friedrich)
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