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1. The conformal method

Constraint equations: For (M, g̃, K̃), the constraint equations are

Scalg̃ + (trg̃K̃)2 − |K̃|2g̃ = 0

∇̃iK̃ij − ∇̃j(trg̃K̃) = 0

We will assume n = dimM ≥ 3, N = 2n
n−2 and N − 2 = 4

n−2 which is the nice
exponent for making the conformal transformation.

We set g̃ = φN−2g and K̃ = τ
n
g̃+φ−2(σ+LW ), where g is a Riemannian metric

on M . Also, τ : M → R, a function, and σ, a symmetric traceless 2-tensor such
that ∇iσij = 0, are given. We are solving for φ : M → R∗+, a conformal factor
and W , a 1-form. Here, LW is the conformal Killing operator,

LWij = ∇iWj +∇jWi −
2

n
∇kWkgij.

Using these, we can rewrite the constraint equations as

−4(n− 1)

n− 2
∆φ+ Scalgφ+

n− 1

n
τ 2φN−1 = |σ + LW |2φ−N−1

−1

2
L∗LW =

n− 1

n
φNdτ.

The first equation is the Lichnerowicz equation. The second one is called the
vector equation. Together they are called the conformal constraint equations.
Here, L∗ is the formal L2 adjoint of L, and (−1

2
L∗LW )j = ∇iLWij.

If we take the trace of K̃ with respect to g̃, we get τ . This justifies the name
mean curvature for τ . If dτ is 0, then the equations decouple. The vector equation
is easy to solve (usually just 0 in this case) and then we can solve the Lichnerowicz
equation.

Solutions to this system are well understood when τ is constant and, by per-
turbation arguments, when τ is close to constant, i.e. when the coupling is small.
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What happens when dτ is not small? Suppose I can define λ as the magnitude
of φ. Then the vector equation gives that W has order λN . In the Lichnerowicz
equation, we see that both the τ 2 term and the |σ + LW |2 are of order λN−1.

In elliptic equations it is important to get a priori estimates. But here, just
looking at the order of magnitude, the two dominant terms have the same order
of magnitude but opposite signs, so there is no a priori bound on φ.

2. The HNT-M method

What if we choose λ small?

Theorem 2.1. Assume that M is compact and that Y (g) > 0. (This is the
Yamabe invariant,

Y (g) = inf
u∈C1,u6≡0

∫ (4(n−1)
n−2 |∇u|

2 + Scalgu2)(∫
uN
)2/N .)

Then if σ 6≡ 0 and is sufficiently small, then the conformal constraint equations
have a solution.

Proof. Set φ = λφ̂, W = λNŴ and σ = λ
N
2
+1σ̂. We rewrite the conformal

constraint equations as (ignoring coefficients)

−∆φ̂+ Scalφ̂+
n− 1

n
(λN−2τ 2)φ̂N−1 = |σ̂ + λ···LŴ |2φ̂−N−1

−1

2
L∗LŴ = φ̂Ndτ

In this system, let λ→ 0. The first equation becomes

−∆φ̂+ Scalφ̂ = |σ|2φ̂−N−1

which is just the Lichnerowicz equation with τ = 0, and σ + LW replaced by
σ. This system thus decouples for λ = 0. We can then use the implicit function
theorem to get a solution for λ small. �

This theorem is limited to the case where Y (g) > 0, and we construct solutions
that are very close to zero, and so we might want to look at other types of
manifolds. It is not known how to do this for noncompact cases. [Well, it is. It
should be posted on ArXiV soon for the AE case.]

3. The DGH method

What if λ is very large? Looking at the Lichnerowicz equation, we would expect
the τ 2 and |σ + LW |2 terms should dominate, and we should get something like

n− 1

n
τ 2φN−1 ' |LW |2φ−N−1.
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We can then plug this into the second equation to get a nontrivial solution to

−1

2
L∗LW =

√
n− 1

n
|LW |dτ

|τ |
,

which we call the limit equation. Heuristically, if this equation has no nontrivial
solution, then λ cannot become very large, and so we get an a priori bound for
φ and W which we can then use to solve this system.

Theorem 3.1 (DGH). Assume that M is compact and that σ 6≡ 0 if Y (g) ≥ 0.
Also, assume that τ ≥ τ0 > 0, for τ0 arbitrarily small. Then if the limit equation

−1

2
L∗LW = α

√
n− 1

n
|LW |dτ

τ

has no nonzero solution for any α ∈ (0, 1], then the set of solutions to the con-
formal constraint equations is nonempty and compact.

This requires no restriction on the sign of the Yamabe invariant, but we need
the mean curvature is bounded from below. This method also works for AH
manifolds (G-Sakovich) and AE manifolds (Dilts-G-Isenberg) (where we need
that τ ≥ εr−α with α ∈ (1, n− 1) [He wrote it incorrectly on the board, but this
is correct].

To use this theorem, we still need to prove the limit equation has no solutions.
Example: If (M, g) is Einstein with Ric = −(n− 1)g, then the limit equation

has no solution provided that ‖dτ/τ‖L∞ <
√
n. Recently we [Gicquaud and Ngo

Quoc Anh, his post-doc] have come up with a simplified proof based on the Leray-
Schauder theorem: Take X a Banach space, F : X → X continuous such that
F (B) is compact for any bounded set B. Then if the set {(x, λ) : s = λF (x)} is
bounded, then F has a fixed point, and the set of fixed points is compact.

Proof of DGH. We choose X = L∞(M,R). We define

F : X → X

by decomposing it into pieces X → W 2,p → C1 → X where the maps are
φ 7→ W 7→ W 7→ ψ where the first map is solving the vector equation, the second
is the compact embedding [using Rellich-Kondrachov] and the third is solving the
Lichnerowicz equation using the given W . We can then show that F is continuous
and compact. Thus all we have left is to prove that the given set is bounded, i.e.
the set of λ-fixed points.

Assume that the set of λ-fixed points is unbounded. Then we get a sequence
(λi, ψi) such that ‖ψi‖L∞ → ∞. Set φi = F (ψi) = ψi/λi. Set γi = ‖φi‖L∞ . Let

φ̂i = 1
γi
φi and Ŵi = 1

γNi
Wi and σ̂ = 1

γNi
σ. We get

1

γN−2i

(−∆φ̂i +Rφ̂i) +
n− 1

n
τ 2φ̂N−1i = |σ̂i + LŴi|2φ̂−N−1i
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−1

2
L∗LŴi =

n− 1

n
φ̂Ni dτ

Clearly we have φ̂Ni bounded in L∞ because of the rescaling and so the Ŵi are
bounded in W 2,p, and so we can extract a subsequence that converges in C1.
Thus we only need to prove that φ̂i → φ̂∞ where

φ̂N∞ =

√
n− 1

n

|LŴ∞|
|τ |

.

Choose ε > 0 and φ̂± ∈ C2 such that φ̂∞− ε ≤ φ̂− ≤ φ̂∞− ε/2 and φ̂∞+ ε/2 ≤
φ+ ≤ φ̂+ + ε. If γi is large enough, the −∆ + R term completely disappears

from the Lichnerowicz equation, and so φ̂± are sub and supersolutions for the

Lichnerowicz equation for large enough γi. Thus φ̂− ≤ φ̂i ≤ φ̂+ for large enough

i. Thus φ̂i → φ̂∞. �

It looks like there’s an improvement. Do you get a uniqueness result from using
the implicit function theorem? No, because you could have another solution that
goes to infinity as λ→ 0.


