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This talk will be on gauge theory, not relativity.
I will be using gauge theory to study topological invariants. Witten proposed

an interesting program a few years ago; we’re trying to make it work.
For any W 3, a compact manifold, there is a Casson invariant. The study of this

led to Floer theory. We start with a principle G bundle E over W , where G is a
simple group. We then look at connections A on E, and study the Chern-Simons
functional

CS(A) =
1

4π

∫
W

trA ∧ dA+
2

3
A ∧ A ∧ A.

Let FA = ∂A + A ∧ A. A is a 1 form, but it is really shorthand for some
reference connection plus a one form, i.e. ∇0 + A. The flat connection is where
the “curvature” one form is zero.

We can take the gradient of the CS functional on W × R. See fig 1. We can
then use it to make a gradient flow. The Euler invariant from the flow lines gives
the Casson invariant.

Survey article: Khovanov homology and Gauge theory by Witten (2012).
This is a proposed scheme to understand knot invariants using gauge theory.

See figure 2.
If you look at the gradient flow equations, ∂A/∂t = ∇CS(A), they are equiv-

alent to F+
Λ = 0, i.e. the self dual equations.

Witten said there is a gauge theory on manifolds like W × R+
y . “Firebranes

and Knots” gives another introduction for this topic, more physically motivated.
First, we replace the group with its complexification, G 7→ GC, (like SU(n) 7→

Sl(n,C)), and send A 7→ A = A + iφ. Then consider CS(A). We choose a
parameter α, then take <(eiαCS(A)), which is now a real valued function. We
also take ∂y = −∇<(eiαCS(A)). This recaptures idea of gradient flow, which
doesn’t work out so nicely if the function was complex.

These equations are invariant under G, but not GC. So, we look at solutions
lying in the zero set of the moment map. We put an extra equation to get this:
dA ? φ = 0.

The KW (Kapuscin-Witten) equations (also by Haydys) are FA−φ∧φ−?∂Aφ =
0 and ∂A ? φ = 0. Typically we want to add a gauge condition to get these to be
elliptic, ∂ ? (A− A(0)) = 0, for some reference connection A(0). We should think
of A as a 1 form, and ?φ as a 3 form. Then this is really just some lower order
perturbation of d+ d∗, and so they are elliptic.
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See Fig 3. We have a knot on the boundary, and can consider W × R or a 4-
manifold with a 3-manifold boundary. We look for fields (A, φ) such that φ ∼ 1/y
on W \K and φ has some extra singularity along K. Classical theory won’t work
quite right because it is somewhat singular at the boundary. Today, we’ll talk
about the vacuum case, where the knot is empty. This would correspond to the
case where the Khovanov homology is zero.

Theorem 0.1 (M-Witten). (1) When K is empty, this is an elliptic bound-
ary problem (in the uniformly degenerate calculus).

(2) Ind(DKW ) = −(dim g)χ(M)
(3) Uniqueness theorem: If (A, φ) is a solution on R3 × R+ and these are

“asymptotically Nahm” at infinity, then (A, φ) is the model Nahm solu-
tion.

Model solution: This lives in R1
y. Let g be the Lie algebra of G. We pick

t1, t2, t3 ∈ g such that they generate SU(2). Let a = 1, 2, 3 and i = 0, 1, 2, 3. Thus
we have [t1, t2] = t3 and similar cyclic permutations. There are lots of possible

choices for this. Let A(0) = ∂. Do this on R3 × R1
y. Let φ = φ(0) =

∑
tadxa

y
. If we

plug this into the equations, we can see that these are solutions, thanks to the
commutation relationships.

Definition 0.2. On M , ∂M = W , (A, φ) satisfy Nahm-pole boundary conditions

provided A = A(0) + o(y0), lower order stuff, and φ =
∑
tadxa

y
+ o(y−1).

There is some rigidity for φ. It looks like you’re choosing some frame, but
this definition is really natural. In general, we can pick a representation ρ :
SU(2) → g. We pick a standard basis τa 7→ ta. We want to make sense of
φρ =

∑
tadx

a ∈ ad(E)⊗T ∗W . If I feed in an orthonormal basis, I get φρ(ea) = ta.
If I pick a different basis, I get different ta. Thus φρ ∈ C∞(W,ad(E) ⊗ T ∗W ).
So, this is really a rigid condition. I have choices, but they’re only discrete, so I
can’t deform the top order part of φ.

What about A? If I look at these in the equations, I have a 1/y2 term and get
Nahm’s equation. The 1/y term says you have a ∂A(0)

φρ = 0. If you decode this,
this means the connection on the image of φρ is the Levi-Civita connection of W .
This is the rigidity of the leading part of A.

Uniqueness theorem: See fig 4. Also, as |(~x, y)| → ∞ we also have (A, φ) ∼
(A(0), φ(0)) as in the figure. We can conclude that (A, φ) ≡ (A(0), φ(0)), a Nahm
Solution.

If this wasn’t true, then I would have something interesting going on, then I
could scale it to y = 0, and it could bubble. This says that there can’t be any
bubbles on the boundary. It is possible they could bubble in the center. See
Gagliardo-Uhlenbech, Taubes for more on this problem. The intuition is that
there is no interior bubbling.
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How to prove that the solutions are equivalent? We use a Weitzenboch formula.
Let

Vij = Fij − [φi, φj] + εhlijDhφl,

where Fij is the 2 form component of the curvature. Let V0 = ∂∗Aφ.∫
M

−tr
(
VijV

ij + (V 0)2
)

=

∫
−tr

(
1

2
FijF

ij +
∑

(Daφb)
2 +

∑
(Diφy)

2

+ ([φy, φa])
2 +

∑
(dyφa +

1

2
εabc[φb, φc])

2

)
+

∫
W

εabctr(φaFbc)

and other boundary terms. Parts of this disappear if we have solutions. The
last term in the main integral vanishes for Nahm solutions, and so it vanishes for
solutions near the boundary. This would show uniqueness if the boundary term
vanished.

At a formal level, this just works. We’ve assumed that A = A(0) + o(1) and
φ =

∑
tadx

a/y+o(1/y), and so we can’t say anything about the boundary terms
with just this. We need to improve this into an actual expansion, something like
A = A(0) + ya1 + · · · . In the best case we have φ =

∑
stuff + φ1y+ · · · . In this

case, the boundary terms cancel out, and so it works.
In general, there are more complicated expansions. They aren’t so hard, but

they do involve powers of y1/2. It takes a bit of work to make it all work, but it
does. Why should you expect such an expansion? The whole point is that this
is not a standard elliptic problem.

If I take DKW |(A(0),φ(0)) = L ' ∂y +
∑
Ba∂xa + 1

y
B0, where we are restricting

to an approximate Nahm pole solution. L is a linear operator, the B’s depend
on x and y. I could look for solutions of the form yλa and yλφ. If I put these
into the linearized equations, I get, among other things,

λaa +
1

y
([ta, φy]− εabc[tb, ac]) = 0

and λφy + [ta, φa] = 0. We have to attack this with representation theory. We
have look at ρ(SU(2)) ⊂ g, calculate indicial roots, and then we get the y’s to
the 1/2.

We use L to produce a parametrix G, an approximate inverse, and then try
understand its sharp mapping properties.

What happens with knots? Look at Ind(L). See fig 5. If I take this, then the
index on the left part plus the index of the right part give the index of the whole
operator. The right part gives the Euler characteristic (with a sign). On the left
part, we get index zero thanks to the splitting.

Consider Σ2 with a point singularity. There is a good model solution at that
point. There’s a severe singularity at the point, but there’s still a good model.
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In my experience, the big issue is boundary regularity. There are two bound-
aries, overall and near the knot. If we can control that, we can get the overall
control we want.


