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Asymptotically flat nontrapping space-times
Domain: R3+1.

Lorenzian metric: g = gαβdxαdxβ.

Space-like foliation: t = const, normal N = ∇t, space-like.

Asymptotically flat: g = e + O(r−ε).

Stationary: Killing field X = ∂t, time-like.

Nontrapping: all null geodesics escape to infinity.

More general:
small time dependent perturbation thereof,
potentials,
magnetic fields
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Asymptotically flat black hole space-times
Domain: R3+1

⊃ M = {r > r0},

Lorenzian metric: g = gαβdxαdxβ.

Space-like foliation: t = const, normal N = ∇t, time-like.

Asymptotically flat: g = m + Orad(1/r) + O(1/r2).

Event horizon: H = {r = rH }, rH > r0.

Null generator: L = ∇r, tangent toH , ∇LL = σL .

Trapped set: T ⊂ {r > rH }, compact.

Killing field: X = ∂t, time-like outside a compact set.

More general: small time dependent perturbation thereof, etc.
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Scalar waves
Inhomogeneous wave equation:

�gu = f , u[0] := (u(0),Nu(0)) = (u0,u1).

Also with magnetic field and/or potential.

Energy momentum tensor:

Tαβ = ∂αu∂βu −
1
2

gαβ∂νu∂νu,

∇
αTαβ = 0, ∇

α(TαβXβ) = 0.

Conserved energy:

E =

∫
T(X,N)dV.

Positive definite in nontrapping case, positive definite outside a
compact set in black hole case.
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Decay estimates for wave equations
Equation:

(�g + V)u = f , u[0] = (u0,u1).

Decay estimates for linear waves:
Uniform energy bounds
Local energy decay
Strichartz estimates
Pointwise decay

Goals:
Do such properties hold for physically relevant space-times ?
Characterization in terms of spectral properties
Stability with respect to (time dependent) perturbations

Possible obstructions:
Low frequency: eigenvalues, resonances
High frequency: trapping
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Uniform energy bounds and the resolvent
(E) ‖u[t]‖Ḣ1×L2 . ‖u[0]‖Ḣ1×L2 .

To define the resolvent take a time Fourier transform

�gu = f −→ Pτû(τ) = f̂ (τ)←→ û(τ) = Rτf (τ)

In product case, g = −dt2 + g0, Rτ = (∆g0 + τ2)−1.
A-priori we have exponential bounds

‖u[t]‖Ḣ1×L2 . eMt
‖u[0]‖Ḣ1×L2 .

so resolvent is well defined and holomorphic for =τ < −M.

Proposition

Uniform energy bounds are equivalent to the resolvent bound

‖Rτ‖L2→Ḣ1 . |=τ|−1, =τ < 0

Eigenvalues (Must be on imaginary axis in product case.):

Pτu = 0, =τ < 0
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Local energy decay in Minkowski space-time

�φ = 0 in Rn+1, φ[0] = (φ0, φ1).

Local energy decay (also known as Morawetz estimates):

‖∇x,tφ(x, t)‖L2(R×BR) . R
1
2 ‖∇x,tφ(x, 0)‖L2 .

Heuristics: A speed 1 wave spends at most O(R) time inside BR.
Morawetz’s proof uses the positive commutator method. If P and Q
are selfadjoint, respectively skewadjoint operators then

2<〈Pφ,Qφ〉 = 〈[Q,P]φ,φ〉

Apply this with

P = �, Q = ∂r +
n − 1

2r
,

to obtain

‖r−
1
2 /∇φ(x, t)‖L2 + ‖φ(0, t)‖L2 . ‖∇x,tφ(x, 0)‖L2 , n = 3
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The local energy norms
At the L2 level we set

‖u‖LE = sup
k
‖〈r〉−

1
2 u‖L2(R×Ak), Ak = {|x| ≈ 2k

} ×R

We also define its H1 counterpart, as well as the dual norm

‖u‖LE1 = ‖∇u‖LE + ‖〈r〉−1u‖LE ‖f ‖LE∗ =
∑

k

‖〈r〉
1
2 f ‖L2(R×Ak)

Sharp formulation of local energy decay:

(LE) ‖u‖LE1 + ‖∇u‖L∞L2 . ‖�u‖LE∗+L1L2 + ‖∇u(0)‖L2

Proposition

Assume uniform energy bounds. Then local energy decay is equivalent to the
uniform resolvent bound

‖Rτf ‖LE1
0
. ‖f ‖LE∗0 , =τ ≤ 0
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Embedded resonances

These are obstructions to the resolvent local energy decay estimate,

‖Rτf ‖LE1
0
. ‖f ‖LE∗0 , =τ ≤ 0

On real axis Rτ is defined as the limit as =τ→ 0. This implies the
outgoing radiation condition

r−
1
2 (∂r − iτ)u ∈ L2, u = Rτf .

Definition

u ∈ LE1
0 is an embedded resonance if it satisfies the outgoing radiation

condition and Pτu = 0.
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Local energy decay in geometries with trapping
Example: Schwarzschild space-time, with trapped set = all null
geodesics tangent to the photon sphere r = 3M.

Redeeming feature: hyperbolic flow around trapped null geodesics.

Heuristics: frequency λ waves will stay localized up to time logλ
(Ehrenfest time) near the trapped set, then disperse.

Consequence: | logλ|
1
2 loss in (LE) at frequency λ on trapped set.

Modified local energy norm has log losses on the trapped set,

LE1
⊂ LE1

T
, LE∗

T
⊂ LE∗

with equality away from T . Local energy decay:

(LE) ‖u‖LE1
T

+ ‖∇u‖L∞L2 . ‖�u‖LE∗
T

+L1L2 + ‖∇u(0)‖L2

Similar modification in resolvent bounds.
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Strichartz estimates
Range of indices in 3 + 1 dimensions:

2 < p ≤ ∞,
1
p

+
1
q
≤

1
2

Direct estimate for �gu = 0:

‖|Dx|
−ρ
∇u‖LpLq . ‖∇u0‖L2 + ‖u1‖L2 , ρ =

3
2
−

1
p
−

3
q

Inhomogeneous estimate for �gu = f , u[0] = 0

‖∇u‖L∞L2 . ‖|Dx|
ρf ‖Lp′Lq′

Retarded estimate for �gu = f , u[0] = (u0,u1):

‖|Dx|
−ρ
∇u‖LpLq + ‖∇u‖L∞L2 . ‖f ‖

|Dx|
−ρLp′Lq′+L1L2 + ‖u[0]‖Ḣ1×L2

D. Tataru (UC Berkeley) Decay of waves on black hole space-times November 2013 12 / 26



Pointwise decay estimates (Price Law)
Set-up at infinity:

g = m + Orad(r−1) + O(r−2), V = Orad(r−3) + O(r−4).

(Improved) Price Law:

|u(t, x)| .
1

〈t〉〈t − |x|〉2
‖∇u(0)‖Hm,k ,

|∂tu(t, x)| .
1

〈t〉〈t − |x|〉3
‖∇u(0)‖Hm,k .

|∂xu(t, x)| .
1

〈r〉〈t − |x|〉3
‖∇u(0)‖Hm,k .

Remark
When true, the above decay rates are sharp due to the contribution of the
leading order radial terms in the metric or potential.
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Local Energy Decay as a central concept
Connection to Strichartz estimates:

Theorem (Metcalfe-T. ’07 (nontrapping, nonstationary))

Assume that uniform energy bounds and local energy decay hold. Then the
Strichartz estimates hold.

Idea: Outgoing parametrix with good pointwise decay estimates.
The same method applies in the black hole setting, provided one has
only hyperbolic trapping, and a good result near the trapped set T
(e.g. Burq - Guillarmou-Hassell).
Connection to pointwise decay estimates:

Theorem (T. ’09 (stationary), Metcalfe-T.-Tohaneanu ’11 (non-stat.))

Assume that uniform energy bounds and local energy decay hold. Then the
pointwise decay bounds hold (Price’s Law).

Idea: Combine Klainerman’s vector field method near the light cone
with local energy decay inside the cone, reiterate.
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Local energy decay in the nontrapping case
Theorem (Metcalfe-T.’08 (nonstationary))

Local energy decay holds if g is a small perturbation of Minkowski.

Theorem (Marzuola-Metcalfe-T.’07*** (stationary))

Assume that no negative eigenfunctions and zero resonances exist for �g.
Then local energy decay holds.

A key element here is

Theorem (Kato ’59, Agmon ’69, ...., Koch-T. ’05)

There are no (nonzero) resonances embedded in the continuous spectrum.

Theorem (Sterbenz-T., in progress)

a) (stationary) Bifurcations to negative eigenfunctions for �g can occur only
via zero resonances.
b) The result in [MMT] above is stable with respect to small nonstationary
perturbations of the metric.
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The geometry of black hole space-times

Three distinct regions:

(i) Exterior region r� 1.
Assumption: asymptotically flat, g = m + O(r−1).

(ii) Trapped set T .
Assumptions: (a) hyperbolic trapping (e.g. Zworski-Wunsch),
(b) separate from horizon, and
(c) τ , 0 on the trapped set (i.e. ∂t energy positive there).

(iii) The event horizonH .
Assumption: smooth, nondegenerate red shift and convexity.

Challenges:
understand the coupling of three regions at high frequency
the separation between the three regions is blurred at medium
and low frequency.
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A conditional local energy decay result

Theorem (Sterbenz-T., in progress)

For black hole space-times as above, assume that there are no eigenvalues in
=τ < 0, and no resonances on =τ = 0. Then local energy decay holds. The
converse is also true.

A key intermediate step in the above proof is to establish a high
frequency local energy decay estimate,

(LE) ‖u‖LE1
T

+ ‖∇u‖L∞L2 . ‖�u‖LE∗
T

+L1L2 + ‖∇u(0)‖L2 + ‖u‖L2
loc
.

We can also characterize eigenvalues and resonances:

Proposition

a) Eigenvalues and resonances can only occur in a compact subset of {=τ ≤ 0}.
b) Eigenvalues in =τ < 0 are smooth and decay exponentially at infinity.
c) Resonances in =τ = 0 are smooth and decay like r−1 at infinity.
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A less conditional local energy decay
Here we make an additional assumption***, that the null generator L
extends to a Killing vector field which is time-like near the horizon.

Theorem (Sterbenz-T., in progress)

For black hole space-times as above, assume that there are no eigenvalues in
=τ < 0, and no zero resonances. Then local energy decay holds.

Ideas:
Absence of eigenvalues in =τ < 0 =⇒ subexponential decay.
The extra assumption above guarantees via Carleman estimates
from both infinity and from the horizon, that we have a weaker
form of local energy decay for solutions in [0,T], namely

(LE) ‖u‖LE1
T

+‖∇u‖L∞L2 . ‖�u‖LE∗
T

+L1L2+‖∇u(0)‖L2+‖∇u(T)‖L2 .

Coupling the two pieces of information above leads to uniform
energy bounds, and thus to local energy decay.
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Continuity and stability of local energy decay

Theorem (Sterbenz-T., work in progress)

a) For continuous families of black hole space-times as above, eigenvalues can
only bifurcate via a zero resonance.
b) The local energy decay result above is stable with respect to small
stationary perturbations.
c) The local energy decay result above is stable with respect to small
nonstationary*** perturbations.

*** Some extra condition is needed here near the trapped set.

One can get local energy decay for Kerr with large a by continuity
only by knowing that no zero resonances exist in Kerr.
The trapped set dynamics are a-priori unstable with respect to
small nonstationary nondecaying perturbations.
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The Maxwell system

Electromagnetic field F = two form on (M, g).
1. Via differential forms:

dF = 0, d ∗ F = 0

2. Using covariant differentiation:

∇
αFαβ = 0, ∇[γFαβ] = 0

3. Using electromagnetic potential A, F = dA:

∇
α
∇αAβ = 0, ∇

αAα = 0 (gauge condition)

4. Expressed in a reference frame (Neumann-Penrose formalism)
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The Maxwell energy
Energy-momentum tensor

Tij = gklFikFlj +
1
4

gijFklFkl

∇
iTij = 0

If X is Killing then
∇

i(TijXj) = 0

and one obtains a conserved energy,

EX(F) =

∫
Σt

∗iXT =

∫
Σt

νiTijXjdVΣ

Positive definite if X is timelike and Σ is space-like. Then

EX(F) ≈ ‖F‖2L2(Σt)
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General considerations

the same three high frequency regions: (i) the exterior region, (ii)
the trapped region and (iii) the event horizon, with the same high
frequency energy dynamics

the red shift effect is effective at the level of L2 solutions for
familiar space-times (e.g. Schwarzschild/Kerr)

additional difficulty at zero frequency arising from charges.

Modified form of local energy decay, to account for charges.
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The low frequencies and charges

For a closed two dimensional surface S define the electric charge inside
S by

Q =

∫
S

F

Magnetic charge inside S:

Q∗ =

∫
S

F∗

It is natural to take S which includes the black hole inside. Then these
are conserved quantities for the homogeneous problem.
Hodge dual stationary solutions in Schwarzschild:

F0 =
Q
4π

dωS2 , F∗0 =
Q∗

4π
r−2dr ∧ dt

There is a straightforward modification for Kerr.
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Local energy decay

Bound for the homogeneous equation:

‖F‖LET∩L∞L2 . ‖F(0)‖L2

for charge free solutions.

Inhomogeneous equation:

dF = G, dF∗ = G∗

Modified local energy decay:

‖F‖LET + ‖rFrad‖LE . ‖F(0)‖L2 + ‖(G,G∗)‖LE∗
T

+ ‖r(G,G∗)rad‖LE∗
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Poinwise decay

Price law:
|F| .

1
〈r〉〈t − r〉3

Peeling estimates (Penrose, Klainerman)

|F(L̄, e)| .
1

〈r〉〈t − r〉3

|F(L̄,L)| + |F(e, e)| .
1

〈r〉〈t〉〈t − r〉2

|F(L, e)| .
1

〈r〉〈t〉2〈t − r〉

Here L = ∂t + ∂r, L∗ = ∂t − ∂r.
Null frame (L, L̄, eA, eB).
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The results so far

Theorem (Sterbenz-T ’13)
Consider a spherically symmetric black hole space-time as above. Then:
a) Uniform energy estimates hold for Maxwell.
b) Local energy decay holds for Maxwell.

Ongoing work: Spectral characterization of local energy decay for
nonradial metrics, similar to the scalar case

Theorem ((Price Law) Metcalfe-Tohaneanu-T., almost ready)

Assume that uniform energy estimates and local energy decay hold for
Maxwell. Then pointwise decay estimates hold.

This last result does not require the metric to be radial or stationary.
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