Fig | (4, w)(a,o) λ Fig Z (1), W) V(de, 0) critical K Solution curve

APPLICATIONS OF BIFURCATION THEORY TO THE EINSTEIN CONSTRAINT EQUATIONS

CALEB MEIER

Slide 25:

$$D_x F((c,0),0) = \begin{bmatrix} -\Delta & 0\\ 0 & \mathbb{L} \end{bmatrix}$$

where $\mathbb{L} = \operatorname{div} \mathcal{L}$.

Slide 30: The problem with the proof is that if you have some graph of the solution space (see figure 1), we know we have solutions for small λ (of the equations on slide 24), but the solutions may not be in the neighborhood of (1,0). However, it is conceivable they live in a neighborhood of some $(\alpha, 0)$ for some α sufficiently small. This came to my attention because the statement of the theorem as I gave contradicts the case when $\tau \equiv 0$ and $\sigma \not\equiv 0$. In that case, solutions exist for positive scalar curvature metrics, but do *not* exist for Yamabe zero or negative metrics.

Slide 32: See figure 2. I want my solution curve to be more exciting than just constant, sitting at the critical solution (ϕ_c , 0). I want it to either cross (into negative Yamabe metrics) or double back (to get non-uniqueness). This is why I need analyticity.

Caleb Meier

The Einstein Constraints

The Conformal Formulation Solution Theory for Closed \mathcal{M}

Bifurcation Theory

Liapunov-Schmid Reduction

Unscaled CTT

Main Results Outline of Proof of Critical Density Outline of Proof of Non-uniqueness

Scaled CT1

Main Results Outline of Proof for Family of Metrics Outline of Proof of Negative Yamabe o Non-uniqueness

Final Remarks

Applications of Bifurcation Theory to the Einstein Constraint Equations

Caleb Meier

Departments of Mathematics University of California, San Diego

CCM

Outline

Bifurcation Theory and the Constraints

Caleb Meier

The Einstein Constraints The Conformal Formulation Solution Theory for Closed M

Bifurcation Theory

Liapunov-Schmidt Reduction

Unscaled CTT

Main Results Outline of Proof of Critical Density Outline of Proof of Non-uniqueness

Scaled CTT

Main Results Outline of Proof for Family of Metrics Outline of Proof of Negative Yamabe of Non-uniqueness

Final Remarks

- The Conformal Formulation
- Solution Theory for Closed *M*
- Tools from Analytic Bifurcation Theory
 Liapunov-Schmidt Reduction

3

- Non-uniqueness of Unscaled CTT Solutions
 - Main Results
 - Outline of Proof of Critical Density
 - Outline of Proof of Non-uniqueness

of

- 4 Non-uniqueness of Scaled CTT Solutions
 - Main Results
 - Outline of Proof for Family of Metrics
 - Outline of Proof of Negative Yamabe or Non-uniqueness

5 Final Remarks

The Einstein Constraint Equations

Bifurcation Theory and the Constraints

Caleb Meier

The Einstein Constraints

The Conformal Formulation Solution Theory for Closed \mathcal{M}

Bifurcation Theory

Main Results Outline of Proof of Critical Density Outline of Proof of Non-uniqueness

Scaled CTT

Outline of Proof for Family of Metrics Outline of Proof of Negative Yamabe or Non-uniqueness

Final Remarks

Using the 3 + 1 decomposition of spacetime, one can formulate the Einstein Equations as an initial value problem where the initial data consists of a Riemannian metric \hat{g}_{ab} and a symmetric tensor \hat{k}_{ab} on a specified 3-dimensional manifold \mathcal{M} .

Like Maxwell's equations, the initial data \hat{g}_{ab} and \hat{k}_{ab} must satisfy constraint equations, where the constraints take the form

Definition 1

$$\hat{R} + \hat{k}^{ab}\hat{k}_{ab} + \hat{k}^2 = 2\kappa\hat{\rho},\tag{1}$$

$$\hat{D}_b \hat{k}^{ab} - \hat{D}^a \hat{k} = \kappa \hat{j}^a.$$
⁽²⁾

Here \hat{R} and \hat{D} are the scalar curvature and covariant derivative associated with \hat{g}_{ab} , \hat{k} is the trace of \hat{k}_{ab} and $\hat{\rho}$ and \hat{j}^a are matter terms obtained by contracting the stress energy tensor with a vector field normal to \mathcal{M} .

The Conformal Method

Bifurcation Theory and the Constraints

Caleb Meier

I he Einstein Constraints The Conformal Formulation Solution Theory for

Bifurcation Theory

Unscaled CTT

Main Results Outline of Proof of Critical Density Outline of Proof of Non-uniqueness

Scaled CTT

Outline of Proof for Family of Metrics Outline of Proof of Negative Yamabe or Non-uniqueness

Final Remarks

The *York conformal decomposition* splits initial data into freely specifiable pieces plus 4 pieces determined by the constraints. First conformally transform the metric \hat{g}_{ab} to obtain:

$$\hat{g}_{ab} = \phi^4 g_{ab},$$

$$\hat{\tau} = \hat{k}_{ab}\hat{g}^{ab} = \tau.$$

Then decompose \hat{k}_{ab} into its trace and its symmetric, trace-free part \hat{l}^{ab} :

$$\hat{k}^{ab}-rac{1}{3}\hat{g}^{ab}\hat{ au}=\hat{l}^{ab}$$

Then rescale the symmetric, trace free tensor to obtain a new symmetric, tracefree tensor I^{ab} , where

$$\hat{I}^{ab} = \phi^{-10} I^{ab}.$$

Using a general algebraic result, we may decompose I^{ab} in the following way:

$$I^{ab} = \sigma^{ab} + \mathcal{L}w^{ab}, \quad \mathcal{L}w^{ab} = D^a w^b + D^b w^a - \frac{2}{3}g^{ab}D_k w^k,$$

where σ^{ab} is symmetric, traceless and divergence free ($D_b \sigma^{ab} = 0$).

Unscaled CTT Formulation

Bifurcation Theory and the Constraints

Caleb Meier

The Einstein Constraints The Conformal Formulation Solution Theory for

Bifurcation Theory

Liapunov-Schmidt Reduction

Unscaled CTT

Main Results Outline of Proof of Critical Density Outline of Proof of Non-uniqueness

Scaled CT1

Main Results Outline of Proof for Family of Metrics Outline of Proof of Negative Yamabe of Non-uniqueness

Final Remarks

$$\hat{R}^{(3)}\hat{R}+\hat{ au}^2-\hat{k}_{ab}\hat{k}^{ab}-2\kappa\hat{
ho}=0, \qquad \hat{D}^a\hat{ au}-\hat{D}_b\hat{k}^{ab}-\kappa\hat{j}^a=0,$$

and using the fact that ${}^{3}\hat{R} = \phi^{-5}({}^{3}R\phi - 8\Delta\phi)$, we obtain a coupled elliptic system for the conformal factor ϕ and w^{a} :

Definition 2 (Unscaled CTT Equations)

$$\begin{split} -8\Delta\phi+R\phi+\frac{2}{3}\tau^2\phi^5-(\sigma_{ab}+(\mathcal{L}w)_{ab})(\sigma^{ab}+(\mathcal{L}w)^{ab})\phi^{-7}-2\kappa\hat\rho\phi^5=0,\\ &-D_a(\mathcal{L}w)^{ab}+\frac{2}{3}\phi^6D^b\tau+\kappa\phi^{10}\hat{J}^b=0. \end{split}$$

Scaled CTT Formulation

Bifurcation Theory and the Constraints

Caleb Meier

The Einstein Constraints The Conformal Formulation Solution Theory for

Bifurcation Theory

Liapunov-Schmidt Reduction

Unscaled CTT

Main Results Outline of Proof of Critical Density Outline of Proof of Non-uniqueness

Scaled CT1

Main Results Outline of Proof for Family of Metrics Outline of Proof of Negative Yamabe o Non-uniqueness

Final Remarks

$$\hat{
ho} = \phi^{-8}
ho$$
 and $\hat{j}^a = \phi^{-10} j^a$,

we obtain the more standard scaled CTT formulation of the constraints:

Definition 3 (Scaled CTT Equations)

$$\begin{split} -8\Delta\phi+R\phi+\frac{2}{3}\tau^2\phi^5-(\sigma_{ab}+(\mathcal{L}w)_{ab})(\sigma^{ab}+(\mathcal{L}w)^{ab})\phi^{-7}-2\kappa\rho\phi^{-3}=0,\\ &-D_a(\mathcal{L}w)^{ab}+\frac{2}{3}\phi^6D^b\tau+\kappa j^b=0. \end{split}$$

Free data and Determined Data

Bifurcation Theory and the Constraints

Caleb Meier

The Einstein Constraints The Conformal Formulation Solution Theory for

Bifurcation Theory

Liapunov-Schmidt Reduction

Unscaled CTT

Main Results Outline of Proof of Critical Density Outline of Proof of Non-uniqueness

Scaled CTT

Main Results Outline of Proof for Family of Metrics Outline of Proof of Negative Yamabe or Non-uniqueness

Final Remarks

Both (2) and (3) are determined systems of elliptic PDE with free data:

- *g*_{ab} conformally related metric,
- σ_{ab} symmetric, traceless, divergence free tensor,
- τ the mean curvature function,
- $\hat{\rho}, \hat{j}^a$ energy density and momentum current density and determined data:

and determined data.

- ϕ conformal factor (unknown portion of metric)
- w unknown portion of extrinsic curvature k_{ab} .

By solving the unscaled CTT formulation for (ϕ, w) , one obtains the following physical solutions to the Einstein constraints:

$$\bullet \hat{g}_{ab} = \phi^4 g_{ab}$$

$$\hat{k}^{ab} = \phi^{-10} [\sigma^{ab} + (\mathcal{L}w)^{ab}] + \frac{1}{3} \phi^{-4} \tau g^{ab}.$$

By determining solutions these equations one is parametrizing solutions to the constraints by the freely specifiable data.

Non-uniqueness of Unscaled Equations

Bifurcation Theory and the Constraints

Caleb Meier

The Einstein Constraints The Conformal Formulation Solution Theory for Closed M

Bifurcation Theory Liapunov-Schmid

Unscaled CTT

Main Results Outline of Proof of Critical Density Outline of Proof of Non-uniqueness

Scaled CTT

Main Results Outline of Proof for Family of Metrics Outline of Proof of Negative Yamabe or Non-uniqueness

Final Remarks

Equations of the form of the Unscaled CTT equations arise in the study of the Einstein-field equation [4] and in the conformal thin sandwich formulation of the constraints with unscaled sources [15, 2]. In [14] we consider the uniqueness properties of solutions to equations of this form on closed manifolds. The motivation for this work stemmed from the following:

- The semilinear portion of unscaled CTT equations is not necessarily monotone and Hamiltonian constraint can have non-convex energy, so uniqueness is not expected.
- A partial of analysis of the non-uniqueness properties of equations similar to (2) is given in [2, 15] in the asymptotically Euclidean setting.

Solution Theory for Scaled CTT Equations

Bifurcation Theory and the Constraints

Caleb Meier

The Einstein Constraints The Conformal Formulation Solution Theory for

Solution Theory Closed \mathcal{M}

Bifurcation Theory

Reduction

Main Results

Outline of Proof of Critical Density Outline of Proof of Non-uniqueness

Scaled CTT

Main Results Outline of Proof for Family of Metrics Outline of Proof of Negative Yamabe or Non-uniqueness

Final Remarks

Solution Theory for coupled, scaled CTT equations on closed \mathcal{M} depends greatly on (g, τ, σ) .

- τ is constant, CTT equations decouple. Solution theory is well-understood for all Yamabe classes and σ in low regularity setting. Solutions are unique when they exist. [Choquet-Bruhat, Isenberg, Maxwell, Holst, Nagy, Tsogtgerel][3, 8, 10, 6]
- τ is near-constant (near-CMC $\frac{||\sigma_{\tau}||_{z}}{\min \tau} \leq C$). Solution theory is well-understood for all Yamabe classes and σ in low regularity setting. Solutions are unique when they exist. [Isenberg, Moncrief, Allen, Clausen, Holst, Nagy, Tsogtgerel] [9, 1, 6]
- τ is far-from-CMC (no restriction on τ). Solutions exist for low regularity data in the event that $g \in \mathcal{Y}^+$ and σ is sufficiently small. Solutions not necessarily unique. [Holst, Nagy, Tsogtgerel, Maxwell][6, 7, 11]

Non-uniqueness of Scaled Equations

Bifurcation Theory and the Constraints

Caleb Meier

The Einstein Constraints The Conformal Formulation Solution Theory for

Closed \mathcal{M}

Bifurcation Theory

Reduction

Main Results Outline of Proof of Critical Density Outline of Proof of Non-uniqueness

Scaled CTT

Main Results Outline of Proof for Family of Metrics Outline of Proof of Negative Yamabe or Non-uniqueness

Final Remarks

In [13], we consider the uniqueness properties of the solutions obtained in [6] to the scaled equations. The primary motivation for this work stemmed from the following:

- The far-from-CMC existence results in [6] rely on the Schauder fixed point Theorem, which do not guarantee uniqueness of solutions.
- In [12], Maxwell showed that solutions to the scaled CTT equations are non-unique for metrics in the zero Yamabe class and families of low-regularity mean curvature functions ($\tau \in L^{\infty}$ as opposed to $\tau \in W^{1,z}$ in [6]).

General Approach

Bifurcation Theory and the Constraints

Caleb Meier

The Einstein Constraints The Conformal Formulation Solution Theory for

Bifurcation Theory

Liapunov-Schmidt Reduction

Unscaled CTT

Main Results Outline of Proof of Critical Density Outline of Proof of Non-uniqueness

Scaled CTT

Main Results Outline of Proof for Family of Metrics Outline of Proof of Negative Yamabe or Non-uniqueness

Final Remarks

The approach to analyzing the uniqueness properties of both the scaled and unscaled CTT equations in [14] and [13] is the same and is outlined in the following steps.

- 1 Fix some one parameter family of data $(g_{\lambda}, \tau_{\lambda}, \sigma_{\lambda}, \rho_{\lambda}, j_{\lambda}^{a})$, where $\lambda \in \mathbb{R}$.
- 2 Formulate the CTT equations as a nonlinear problem between Banach spaces where solutions (φ, w) satisfy F((φ, w), λ) = 0 for some λ.
- 3 Find solutions $((\phi_0, \mathbf{w}_0), \lambda_0)$ where the linearization of $F((\phi, \mathbf{w}), \lambda)$ has a one-dimensional kernel.
- 4 Apply a Liapunov-Schmidt reduction to parametrize solution curve in a neighborhood of $((\phi_0, \mathbf{w}_0), \lambda_0)$
- 5 Analyze solution curve using a Taylor series expansion or some other means.

Liapunov-Schmidt Reduction

Bifurcation Theory and the Constraints

Caleb Meier

The Einstein Constraints The Conformal Formulation Solution Theory for Closed M

Bifurcation Theory Liapunov-Schmidt

Liapunov-Schmid Reduction

Unscaled CTT

Main Results Outline of Proof of Critical Density Outline of Proof of Non-uniqueness

Scaled CT1

Main Results Outline of Proof for Family of Metrics Outline of Proof of Negative Yamabe of Non-uniqueness

Final Remarks

 $\begin{aligned} F(x_0,\lambda_0) &= 0 \quad \text{for some } (x_0,\lambda_0) \in U \times V, \\ \dim \ker(D_x F(x_0,\lambda_0)) &= \dim \ker(D_x F(x_0,\lambda_0)^*) = 1. \end{aligned}$

X and *Z* decompose with respect to $D_x F(x_0, \lambda_0)$ and define projection operators *P* and *Q* satisfying

$$P: X \to X_1 = \ker(D_x F(x_0, \lambda_0)), \quad Q: Y \to Y_2 = \ker(D_x F(x_0, \lambda_0)^*).$$

Then $F(x, \lambda) = 0$ if and only if the following two equations are satisfied

$$QF(x,\lambda) = 0,$$

$$(I - Q)F(x,\lambda) = 0.$$
(3)

Liapunov-Schmidt Reduction

Bifurcation Theory and the Constraints

The Einstein Constraints The Conformal Formulation Solution Theory for Closed M

Bifurcation Theory

Liapunov-Schmidt Reduction

Unscaled CTT

Main Results Outline of Proof of Critical Density Outline of Proof of Non-uniqueness

Scaled CTT

Main Results Outline of Proof for Family of Metrics Outline of Proof of Negative Yamabe or Non-uniqueness

Final Remarks

$$G(\mathbf{v},\mathbf{w},\lambda) = (I-Q)F(\mathbf{v}+\mathbf{w},\lambda),$$

to conclude that there exists

 $\psi: U \times V \to W$ such that all solutions to $G(v, w, \lambda) = 0$ in $U \times W \times V$ are of the form $G(v, \psi(v, \lambda), \lambda) = 0$.

Insertion of the function $\psi(\mathbf{v},\lambda)$ into (3) yields a finite-dimensional problem

$$\Phi(\mathbf{v},\lambda) = QF(\mathbf{v} + \psi(\mathbf{v},\lambda),\lambda) = 0.$$
(4)

With added conditions on $F(x, \lambda)$, one can apply the Implicit Function Theorem to $\Phi(v, \lambda)$ to conclude that there exists

 $\gamma: U_1 \to V_1, \quad \gamma(v_0) = \lambda_0, \quad \Phi(v, \gamma(v)) = 0.$

Parametrization of Solution Curve

Bifurcation Theory and the Constraints

Caleb Meier

The Einstein Constraints The Conformal Formulation Solution Theory for Closed M

Bifurcation Theory

Liapunov-Schmidt Reduction

Unscaled CTT

Main Results Outline of Proof of Critical Density Outline of Proof of Non-uniqueness

Scaled CTT

Main Results Outline of Proof for Family of Metrics Outline of Proof of Negative Yamabe or Non-uniqueness

Final Remarks

$$g(\mathbf{v}) = QF(\mathbf{v} + \psi(\mathbf{v}, \gamma(\mathbf{v})), \gamma(\mathbf{v})).$$
(5)

By writing $v = s\hat{v}_0 + v_0$ and inserting this into (5), we obtain the solution curve

$$x(s) = v_0 + s\hat{v}_0 + \psi(v_0 + s\hat{v}_0, \gamma(v_0 + s\hat{v}_0)),$$
(6)

$$\lambda(\boldsymbol{s}) = \gamma(\boldsymbol{v}_0 + \boldsymbol{s}\hat{\boldsymbol{v}}_0). \tag{7}$$

With added assumptions on $F(x, \lambda)$, we may determine $\hat{\lambda}(0)$ to determine second order Taylor expansions of

 $\lambda(s)$ and $f(s) = \psi(v_0 + s\hat{v}_0, \gamma(v_0 + s\hat{v}_0)).$

Problem Considered

Bifurcation Theory and the Constraints

Caleb Meier

The Einstein Constraints The Conformal Formulation Solution Theory for Closed M

Bifurcation Theory

Liapunov-Schmid Reduction

Unscaled CTT

Main Results Outline of Proof of Critical Density Outline of Proof of Non-uniqueness

Scaled CT1

Main Results Outline of Proof for Family of Metrics Outline of Proof of Negative Yamabe o Non-uniqueness

Final Remarks

$$-\Delta\phi + a_R\phi + \lambda^2 a_\tau \phi^5 - a_w \phi^{-7} - 2\pi \hat{\rho} e^{-\lambda} \phi^5 = 0, \qquad (8)$$
$$\mathbb{L} w + \lambda b_\tau^a \phi^6 = 0$$

on a closed manifold (\mathcal{M}, g_{ab}) .

We observe that Eq.(8) is a family of unscaled CTT equations with specified data $(g, \lambda \tau, \sigma, e^{-\lambda} \hat{\rho}, \mathbf{0})$, where

$$a_{R} = \frac{1}{8}R, \qquad a_{\tau} = \frac{1}{12}\tau^{2}, \qquad (9)$$
$$a_{\mathbf{w}} = \frac{1}{8}[\sigma_{ab} + (\mathcal{L}\mathbf{w})_{ab}][\sigma^{ab} + (\mathcal{L}\mathbf{w})^{ab}], \qquad b_{\tau} = \frac{2}{3}D^{a}\tau.$$

Set-Up of Problem

Bifurcation Theory and the Constraints

Caleb Meier

The Einstein Constraints The Conformal Formulation Solution Theory for Closed M

Bifurcation Theory

Liapunov-Schmidt Reduction

Unscaled CTT

Main Results Outline of Proof of Critical Density Outline of Proof of Non-uniqueness

Scaled CTT

Main Results Outline of Proof for Family of Metrics Outline of Proof of Negative Yamabe o Non-uniqueness

Final Remarks

We reformulate Eq. (8) so that we can apply techniques from functional analysis and bifurcation theory to analyze the problem. Define

$$F((\phi, \mathbf{w}), \lambda) = \begin{bmatrix} -\Delta\phi + a_R\phi + \lambda^2 a_\tau \phi^5 - a_{\mathbf{w}} \phi^{-7} - 2\pi\hat{\rho} e^{-\lambda} \phi^5 \\ \mathbb{L} \mathbf{w} + \lambda b_\tau^2 \phi^6 \end{bmatrix}.$$
(10)

We view (10) as a nonlinear operator between Banach spaces $F((\phi, \mathbf{w}), \lambda) : C^{k,\alpha}(\mathcal{M}) \oplus C^{k,\alpha}(\mathcal{TM}) \times \mathbb{R} \to C^{k-2,\alpha}(\mathcal{M}) \oplus C^{k-2,\alpha}(\mathcal{TM}),$ where $(k \ge 2)$. If $F((\phi, \mathbf{w}), \lambda) = 0$, then $((\phi, \mathbf{w}), \lambda)$ solves Eq. (8).

Criterion for non-uniqueness

Bifurcation Theory and the Constraints

Caleb Meier

The Einstein Constraints The Conformal Formulation Solution Theory for Closed M

Bifurcation Theory

Liapunov-Schmidt Reduction

Unscaled CTT

Main Results Outline of Proof of Critical Density Outline of Proof of Non-uniqueness

Scaled CT1

Main Results Outline of Proof for Family of Metrics Outline of Proof of Negative Yamabe of Non-uniqueness

Final Remarks

Want to show that solutions to F((φ, w), λ) = 0 are non-unique in neighborhood of some point ((φ₀, w₀), λ₀).

If X = (φ, w), Implicit Function Theorem says that if D_XF((φ₀, w₀), λ₀) is invertible, then solution can be uniquely parametrized by λ in a neighborhood of ((φ₀, w₀), λ₀).

In order for solutions to be non-unique, we must find a point where D_XF((φ₀, w₀), λ₀) is not invertible. (Note that this condition is not sufficient for non-uniqueness, only necessary.)

Main Results: Existence of Critical Density

Bifurcation Theory and the Constraints

Caleb Meier

The Einstein Constraints The Conformal Formulation Solution Theory for Closed $\mathcal M$

Bifurcation Theory

Liapunov-Schmidt Reduction

Unscaled CTT

Main Results

Outline of Proof of Critical Density Outline of Proof of Non-uniqueness

Scaled CTT

Main Results Outline of Proof for Family of Metrics Outline of Proof of Negative Yamabe of Non-uniqueness

Final Remarks

Suppose that R and $|\sigma|$ are constant. Let $D_X F((\phi, \mathbf{w}), \lambda)$ denote the Fréchet derivative of (9) with respect to $X = (\phi, \mathbf{w})$ and let ρ_c and ϕ_c be defined by

$$\rho_{c} = \frac{R^{\frac{3}{2}}}{24\sqrt{3}\pi|\sigma|} \quad \text{and} \quad \phi_{c} = \left(\frac{R}{24\pi\rho}\right)^{\frac{1}{4}}.$$
 (11)

Then when $\rho = \rho_c$, dim ker $(D_X F((\phi_c, \mathbf{0}), 0)) = 1$ and it is spanned by the constant vector $\begin{bmatrix} 1\\ 0 \end{bmatrix}$.

Caleb Meier

The Einstein Constraints The Conformal Formulation Solution Theory for Closed M

Bifurcation Theory

Liapunov-Schmidt Reduction

Unscaled CTT

Main Results

Outline of Proof of Critical Density Outline of Proof of Non-uniqueness

Scaled CTT

Main Results Outline of Proof for Family of Metrics Outline of Proof of Negative Yamabe o Non-uniqueness

Final Remarks

Suppose that $\tau \in C^{1,\alpha}(\mathcal{M})$ and let $F((\phi, \mathbf{w}), \lambda)$ be defined as in (10). Then if ρ_c and ϕ_c are defined as in Theorem 4 and $\rho = \rho_c$, there exists a neighborhood of $((\phi_c, \mathbf{0}), 0)$ such that all solutions to $F((\phi, \mathbf{w}), \lambda) = 0$ in this neighborhood lie on a smooth curve of the form

$$\begin{split} \phi(s) &= \phi_c + s + \frac{1}{2}\ddot{\lambda}(0)u(x)s^2 + O(s^3), \end{split}$$
(12)
$$\mathbf{w}(s) &= \frac{1}{2}\ddot{\lambda}(0)\mathbf{v}(x)s^2 + O(s^3), \\ \lambda(s) &= \frac{1}{2}\ddot{\lambda}(0)s^2 + O(s^3), \end{split}$$

where $u(x) \in C^{2,\alpha}(\mathcal{M})$ and $\mathbf{0} \neq \mathbf{w}(x) \in C^{2,\alpha}(\mathcal{TM})$. In particular, there exists a $\delta > \mathbf{0}$ such that for all $\mathbf{0} < \lambda < \delta$ there exist elements $(\phi_{1,\lambda}, \mathbf{w}_{1,\lambda}), (\phi_{2,\lambda}, \mathbf{w}_{2,\lambda}) \in C^{2,\alpha}(\mathcal{M}) \oplus C^{2,\alpha}(\mathcal{TM})$ such that

 $F((\phi_{i,\lambda}, \mathbf{w}_{i,\lambda}), \lambda) = 0, \text{ for } i \in \{1, 2\}, \text{ and } (\phi_{1,\lambda}, \mathbf{w}_{1,\lambda}) \neq (\phi_{2,\lambda}, \mathbf{w}_{2,\lambda}).$

Outline of Proof for Critical Density

Bifurcation Theory and the Constraints

The Einstein Constraints The Conformal Formulation Solution Theory for Closed M

Bifurcation Theory

Liapunov-Schmid Reduction

Unscaled CTT

Main Results

Outline of Proof of Critical Density

Non-uniqueness

Scaled CTT

Main Results Outline of Proof for Family of Metrics Outline of Proof of Negative Yamabe or Non-uniqueness

Final Remarks

$$q(\chi) = a_R \chi - rac{1}{8} \sigma^2 \chi^{-7} - 2 \pi
ho_c \chi^5,$$

where ρ_c is to be determined. Then we do the following:

- Require that $q(\chi)$ have a single, positive double root. This condition determines ϕ_c , ρ_c .
- Apply the maximum principle to the problem

$$\Delta \phi = a_{R}\phi - \frac{1}{8}\sigma^{2}\phi^{-7} - 2\pi\rho\phi^{5},$$
(13)

when $\rho > \rho_c$ to conclude no solutions exist.

- Apply method of sub-and super-solutions to Eq. (13) when $\rho \leq \rho_c$ to conclude solutions exist.
- Compute $D_X F((\phi_c, \mathbf{0}), 0)$ and use properties of $q(\chi)$ to conclude that it has a one-dimensional kernel

Non-uniqueness Proof

Bifurcation Theory and the Constraints

Caleb Meier

The Einstein Constraints The Conformal Formulation Solution Theory fo

Bifurcatior Theory

Liapunov-Schmid Reduction

Unscaled CTT

Main Results Outline of Proof of Critical Density

Outline of Proof of Non-uniqueness

Scaled CTT

Main Results Outline of Proof for Family of Metrics Outline of Proof of Negative Yamabe or Non-uniqueness

Final Remarks

Use the fact that dim ker $(D_X F((\phi_c, \mathbf{0}), 0)) = 1$ to decompose the domain and codomain

$$\begin{split} C^{2,\alpha}(\mathcal{M}) \oplus C^{2,\alpha}(\mathcal{T}\mathcal{M}) &= \\ & \ker(D_X F((\phi_c, \mathbf{0}), 0)) \oplus (R(D_X F((\phi_c, \mathbf{0}), 0)^*) \cap (C^{2,\alpha}(\mathcal{M}) \oplus C^{2,\alpha}(\mathcal{T}\mathcal{M}))), \\ C^{0,\alpha}(\mathcal{M}) \oplus C^{0,\alpha}(\mathcal{T}\mathcal{M}) &= \\ & (R(D_X F((\phi_c, \mathbf{0}), 0)) \cap (C^{0,\alpha}(\mathcal{M}) \oplus C^{0,\alpha}(\mathcal{T}\mathcal{M}))) \oplus \ker(D_X F((\phi_c, \mathbf{0}), 0)^*). \end{split}$$

Non-uniqueness Proof

Bifurcation Theory and the Constraints

Caleb Meier

The Einstein Constraints The Conformal Formulation Solution Theory for Closed M

Bifurcation Theory

Liapunov-Schmid Reduction

Unscaled CTT

Main Results Outline of Proof of Critical Density

Outline of Proof of Non-uniqueness

Scaled CTT

Main Results Outline of Proof for Family of Metrics Outline of Proof of Negative Yamabe or Non-uniqueness

Final Remarks

Apply the Liapunov-Schmidt Reduction and use the fact that $D_{\lambda}F((\phi_c, \mathbf{0}, \mathbf{0}) \neq 0$ to parametrize solution curve in a neighborhood of $(\phi_c, \mathbf{0}, \mathbf{0})$

$$\begin{bmatrix} \phi(\mathbf{s}) \\ \mathbf{w}(\mathbf{s}) \end{bmatrix} = \mathbf{s} \begin{bmatrix} 1 \\ 0 \end{bmatrix} + \begin{bmatrix} \phi_c \\ 0 \end{bmatrix} + \psi \left(\mathbf{s} \begin{bmatrix} 1 \\ 0 \end{bmatrix} + \begin{bmatrix} \phi_c \\ 0 \end{bmatrix} \right), \gamma \left(\mathbf{s} \begin{bmatrix} 1 \\ 0 \end{bmatrix} + \begin{bmatrix} \phi_c \\ 0 \end{bmatrix} \right) \right),$$
$$\lambda(\mathbf{s}) = \gamma \left(\mathbf{s} \begin{bmatrix} 1 \\ 0 \end{bmatrix} + \begin{bmatrix} \phi_c \\ 0 \end{bmatrix} \right),$$

■ Use fact that $D^2_{XX}F((\phi_c, \mathbf{0}, 0)[\hat{v}_0, \hat{v}_0] \notin R(D_XF((\phi_c, \mathbf{0}, 0)))$ to conclude that $\ddot{\lambda}(0) \neq 0$ to determine second order Taylor series of $\lambda(s)$, $\mathbf{w}(s)$ and $f(s) = \psi(\phi_c \hat{v}_0 + s\hat{v}_0, \gamma(\phi_c \hat{v}_0 + s\hat{v}_0))$ to get

$$\begin{split} \phi(s) &= \phi_c + s + \frac{1}{2}\ddot{\lambda}(0)u(x)s^2 + O(s^3), \end{split} \tag{14} \\ \mathbf{w}(s) &= \frac{1}{2}\ddot{\lambda}(0)\mathbf{v}(x)s^2 + O(s^3), \\ \lambda(s) &= \frac{1}{2}\ddot{\lambda}(0)s^2 + O(s^3), \end{split}$$

Analysis of Solution Curve

Asymptotic properties of solution curve $((\phi(s), \mathbf{w}(s)), \lambda(s))$ imply the following:

- For *s* small, there will exist s_1 and s_2 such that $\lambda(s_1) = \lambda(s_2)$
- For s small, φ(s) is one-to-one

These two properties imply that a **saddle node bifurcation** (or fold) occurs at $((\phi_c, \mathbf{0}), \mathbf{0})$, and that there exists s_1, s_2 such that $\lambda(s_1) = \lambda(s_2) = \lambda_0$ and $((\phi(s_1), \mathbf{w}(s_1), \lambda_0) \neq ((\phi(s_2), \mathbf{w}(s_2), \lambda_0))$.

This implies that both (($\phi(s_1), \mathbf{w}(s_1)$) and (($\phi(s_2), \mathbf{w}(s_2)$) satisfy the unscaled CTT equations with specified data ($g, \lambda_0 \tau, \sigma, e^{-\lambda_0} \hat{\rho}, \hat{f}^a$).

Outline of Proof of Non-uniqueness

Problem Considered

In case of Scaled CTT equations, we consider the one-parameter family of nonlinear problems of problems

$$-\Delta_{\lambda}\phi + \frac{1}{8}\lambda\phi + \frac{\lambda^{4}}{12}\tau^{2}\phi^{5} - \frac{1}{8}(\lambda^{2}\sigma + \mathcal{L}\mathbf{w})_{ab}(\lambda^{2}\sigma + \mathcal{L}\mathbf{w})^{ab}\phi^{-7} - \frac{\lambda^{2}\kappa}{4}\rho\phi^{-3} = 0,$$

$$\mathbb{L}_{\lambda}\mathbf{w} + \frac{2\lambda^{2}}{3}D_{\lambda}\tau\phi^{6} + \lambda^{2}\kappa j^{a} = 0.$$
 (15)

Eq. (15) represents the scaled CTT equations with a one-parameter family of data $(g_{\lambda}, \tau_{\lambda}, \sigma_{\lambda}, \rho_{\lambda}, j_{\lambda}^{a})$, where g_{λ} is a one parameter family of metrics satisfying $R(g_{\lambda}) = \lambda$ and

$$au_{\lambda} = \lambda^2 au, \ \ \sigma_{\lambda} = \lambda^2 \sigma, \ \ \rho_{\lambda} = \lambda^2 \rho, \ \ \text{and} \ \ j_{\lambda}^a = \lambda^2 j^a.$$

Bifurcation Theory and the Constraints

Caleb Meier

The Einstein Constraints The Conformal Formulation Solution Theory for Closed M

Bifurcation Theory

Liapunov-Schmidt Reduction

Unscaled CTT

Main Results Outline of Proof of Critical Density Outline of Proof of Non-uniqueness

Scaled CTT

Main Results Outline of Proof for Family of Metrics Outline of Proof of Negative Yamabe o Non-uniqueness

Final Remarks

Set-Up

Bifurcation Theory and the Constraints

Caleb Meier

The Einstein Constraints The Conformal Formulation Solution Theory for Closed $\mathcal M$

Bifurcation Theory

Liapunov-Schmid Reduction

Unscaled CTT

Main Results Outline of Proof of Critical Density Outline of Proof of Non-uniqueness

Scaled CTT

Main Results Outline of Proof for Family of Metrics Outline of Proof of Negative Yamabe of Non-uniqueness

Final Remarks

$$\mathsf{F}((\phi, \mathbf{w}), \lambda) = \begin{bmatrix} -\Delta_{\lambda}\phi + \lambda a_{R}\phi + \lambda^{4}a_{\tau}\phi^{5} - a_{\mathbf{w},\lambda}\phi^{-7} - \lambda^{2}a_{\rho}\phi^{-3} \\ \mathbb{L}_{\lambda}\mathbf{w} + \lambda^{2}b_{\tau}\phi^{6} + \lambda^{2}b_{\mathbf{j}} \end{bmatrix},$$

where

1

$$\begin{aligned} a_{R} &= \frac{1}{8}, \quad a_{\mathbf{w},\lambda} = \frac{1}{8} (\lambda^{2} \sigma + \mathcal{L} \mathbf{w})_{ab} (\lambda^{2} \sigma + \mathcal{L} \mathbf{w})^{ab}, \\ a_{\tau} &= \frac{1}{12} \tau^{2}, \quad b_{\tau} = \frac{2}{3} D_{\lambda} \tau, \quad a_{\rho} = \frac{\kappa}{4} \rho, \quad b_{\mathbf{j}} = \kappa \mathbf{j}. \end{aligned}$$

Solutions to scaled CTT equations satsify $F((\phi, \mathbf{w}), \lambda) = 0$ and $F((\phi, \mathbf{w}), \lambda) : C^{k,\alpha}(\mathcal{M}) \oplus C^{k,\alpha}(\mathcal{TM}) \times \mathbb{R} \to C^{k-2,\alpha}(\mathcal{M}) \oplus C^{k-2,\alpha}(\mathcal{TM}).$

Caleb Meier

The Einstein Constraints The Conformal Formulation Solution Theory for Closed M

Bifurcation Theory

Unscaled CTT

Main Results Outline of Proof of Critical Density Outline of Proof of Non-uniqueness

Scaled CTT Main Results

Outline of Proof for Family of Metrics Outline of Proof of Negative Yamabe or Non-uniqueness

Final Remarks

Theorem 6

Suppose that \mathcal{M} is a closed 3-dimensional manifold that admits a metric with positive scalar curvature. Then for $\lambda \in U$, where U is a neighborhood of 0, there exists a one-parameter family of metrics (g_{λ}) through g_0 such that $R(g_{\lambda}) = \lambda$. Moreover, $g_{\lambda} : U \to \mathcal{A}^{s,p}$ is analytic.

Theorem 6 shows that the one-parameter family of operators $F((\phi, \mathbf{w}), \lambda)$ is meaningful, and by applying a Liapunov-Schmidt reduction and analyzing the solution curve of $F((\phi, \mathbf{w}), \lambda) = 0$ in a neighborhood of $((1, \mathbf{0}), 0)$, we have the following Theorem.

Caleb Meier

The Einstein Constraints The Conformal Formulation Solution Theory for Closed $\mathcal M$

Bifurcation Theory

Liapunov-Schmidt Reduction

Unscaled CTT

Main Results Outline of Proof of Critical Density Outline of Proof of Non-uniqueness

Scaled CTT Main Results

Outline of Proof for Family of Metrics Outline of Proof of Negative Yamabe or Non-uniqueness

Final Remarks

Let \mathcal{M} be a closed 3-dimensional manifold which admits both a metric with positive scalar curvature and a metric g_0 with zero scalar curvature and no conformal Killing fields, where both metrics are contained in $\mathcal{A}^{s,\rho}$, $s > 3 + \frac{3}{\rho}$. Let $(\tau, \sigma, \rho, \mathbf{j})$ be freely specified data for the CTT formulation of the constraints. Then in any neighborhood U of g_0 there exists a metric $g \in W^{s,\rho}$ and a $\lambda > 0$ such that at least one the following must hold:

- R(g) = λ and solutions to the CTT formulation of the Einstein Constraints with specified data (g, λ²τ, λ²σ, λ²ρ, λ²j) are non-unique
- R(g) = −λ and there exists a solution to CTT formulation of the Einstein Constraints with specified data (g, λ²τ, λ²σ, λ²ρ, λ²j).

Thus, in any neighborhood of a metric with zero scalar curvature and no conformal Killing fields, either there exists a Yamabe positive metric for which solutions to the CTT formulation are non-unique or there exists a Yamabe negative metric for which far-from-CMC solutions to the CTT formulation exist.

Analyticity of R(g)

Bifurcation Theory and the Constraints

Caleb Meier

The Einstein Constraints The Conformal Formulation Solution Theory for Closed M

Bifurcation Theory

Liapunov-Schmid Reduction

Unscaled CTT

Main Results Outline of Proof of Critical Density Outline of Proof of Non-uniqueness

Scaled CTT

Main Results

Outline of Proof for Family of Metrics

Outline of Proof of Negative Yamabe or Non-uniqueness

Final Remarks

First show that the operator $R: \mathcal{A}^{s,p} \to W^{s-2,p}$ is an analytic operator.

• We have that $D^k R(g)h^k = 0$ for $k \ge 8$, where $D^k R(g)$ is the *k*-th Frechet derivative of *R* at *g* and

$$h^k = \underbrace{(h, \cdots, h)}_{k}.$$

k times

This implies that the power series

$$\sum_{n=0}^{\infty} \frac{1}{n!} D^k R(g_0) h^k$$

converges absolutely for arbitrary $h \in \mathcal{A}^{s,p}$.

Taylor's Theorem then implies implies the analyticity of *R*.

Outline of Proof for Family of Metrics

Bifurcation Theory and the Constraints

Caleb Meier

The Einstein Constraints The Conformal Formulation Solution Theory for

Bifurcation Theory

Liapunov-Schmid Reduction

Unscaled CTT

Main Results Outline of Proof of Critical Density Outline of Proof of Non-uniqueness

Scaled CTT

Main Results

Outline of Proof for Family of Metrics

Outline of Proof of Negative Yamabe or Non-uniqueness

Final Remarks

Letting S^{s,p} denote all symmetric two tensors in W^{s,p}, the splitting result in [5] implies that

 $\mathcal{S}^{s,\rho} = \ker(DR(g_0)) \oplus \operatorname{Ran}(DR(g_0)^*)$

as long as g_0 is non-flat.

- Using this result, for h ∈ Ran(DR(g₀)*) small, g₀ + h defines a neighborhood of g₀ in S^{s,p} and G(h, λ) = R(g₀ + h) − λ is well-defined. Apply Implicit Function Theorem to G(h, λ) to obtain ψ(λ) such that 0 = G(ψ(λ), λ) = R(g₀ + ψ(λ)) − λ.
- $g_{\lambda} = g_0 + \psi(\lambda)$ has same regularity as $G(h, \lambda)$.

Caleb Meier

The Einstein Constraints The Conformal Formulation Solution Theory for Closed M

Bifurcation Theory

Liapunov-Schmid Reduction

Unscaled CTT

Main Results Outline of Proof of Critical Density Outline of Proof of Non-uniqueness

Scaled CTT

Main Results Outline of Proof for Family of Metrics

Outline of Proof of Negative Yamabe or Non-uniqueness

Final Remarks

By design, linearization of $F((\phi, \mathbf{w}), \lambda)$ has a one-dimensional kernel at $((1, \mathbf{0}), 0)$ given that (\mathcal{M}, g_0) has no conformal Killing fields.

- Use metric g₀ to build one-parameter family g_λ with no conformal Killing fields
- Verify that the operator F((φ, w), λ) is analytic in a neighborhood of ((1, 0), 0).
- Apply a Liapunov-Schmidt Reduction to obtain the following solution curve in a neighborhood of ((1,0),0):

$$(\phi(s), \mathbf{w}(s)) = (s+1)\hat{v}_0 + \psi((s+1)\hat{v}_0, \gamma((s+1)\hat{v}_0))$$
(16)

$$\lambda(s) = \gamma((s+1)\hat{v}_0).$$

The curve in (16) is analytic for $s \in (-\delta, \delta)$, where $\delta > 0$

Analysis of $\lambda(s)$

Bifurcation Theory and the Constraints

Caleb Meier

The Einstein Constraints The Conformal Formulation Solution Theory for Closed M

Bifurcatior Theory

Liapunov-Schmid Reduction

Unscaled CTT

Main Results Outline of Proof of Critical Density Outline of Proof of Non-uniqueness

Scaled CTT

Main Results Outline of Proof for Family of Metrics

Outline of Proof of Negative Yamabe or Non-uniqueness

Final Remarks

- In unscaled CTT case, we took a Taylor expansion of $\gamma(s)$ and $f(s) = \psi((s+1)\hat{v}_0, \gamma((s+1)\hat{v}_0))$ and conducted an analysis to determine which lower order terms were nonzero. In particular, we were able to show that $\ddot{\lambda}(0) \neq 0$ was the first nonzero coefficient in Taylor series of $\lambda(s)$, which implied our non-uniqueness result in the unscaled case.
- Scaled CTT case is not as amenable to this analysis. It is unclear what the first nonzero term in Taylor expansion of λ(s) is.
- Can use analyticity of λ(s) and positive Yamabe, far-from-CMC solution theory in [6] to draw some conclusions about ((φ(s), w(s), λ(s)).

Properties of $\lambda(s)$

Bifurcation Theory and the Constraints

Caleb Meier

The Einstein Constraints The Conformal Formulation Solution Theory for Closed M

Bifurcation Theory

Liapunov-Schmid Reduction

Unscaled CTT

Main Results Outline of Proof of Critical Density Outline of Proof of Non-uniqueness

Scaled CTT

Main Results Outline of Proof for Family of Metrics

Outline of Proof of Negative Yamabe or Non-uniqueness

Final Remarks

- Solution theory in [6] implies that for λ₀ > 0 sufficiently small, scaled CTT equations have a solution. Therefore, for λ₀ > 0 sufficiently small, there exists s₀ > 0 such that λ₀ = λ(s₀).
- By construction, $\lambda(0) = 0$.
- There is no subinterval $I \subset (-\delta, \delta)$ such that $\lambda(s) = 0$ for each $s \in I$ (follows from analyticity of $\lambda(s)$).

The above three properties imply that either there exists $\lambda_0 < 0$ and s_0 such that $\lambda(s_0) = \lambda_0$ or that there exists $\lambda_1 > 0$ and s_1, s_2 such that $\lambda_1 = \lambda(s_1) = \lambda(s_2)$.

Possible Behavior of Solution Curve

Bifurcation Theory and the Constraints

Caleb Meier

The Einstein Constraints The Conformal Formulation Solution Theory for Closed M

Bifurcation Theory

Liapunov-Schmidt Reduction

Unscaled CTT

Main Results Outline of Proof of Critical Density Outline of Proof of Non-uniqueness

Scaled CTT

Main Results Outline of Proof for Family of Metrics

Outline of Proof of Negative Yamabe or Non-uniqueness

Final Remarks

The above analysis implies that for given data $(g_0, \tau, \sigma, \rho, j^a)$, where $R(g_0) = 0$ and g_0 has no conformal Killing fields, we can always find a metric g_{λ_0} in any neighborhood of g_0 for which one of the following holds:

■ $R(g_{\lambda_0}) = \lambda_0 < 0$ and the scaled CTT equations with specified data $(g_{\lambda_0}, \lambda_0^2 \tau, \lambda_0^2 \sigma, \lambda_0^2 \rho, \lambda_0^2 j^a)$ have a solution (ϕ, \mathbf{w}) .

R(g_{λ0}) = λ0 > 0 and solutions to the scaled CTT equations with specified data (g_{λ0}, λ²₀τ, λ²₀σ, λ²₀σ, λ²₀ρ, λ²₀*j*^a) are non-unique.

Final Remarks

Bifurcation Theory and the Constraints

Caleb Meier

The Einstein Constraints The Conformal Formulation Solution Theory for Closed M

Bifurcation Theory

Liapunov-Schmid Reduction

Unscaled CTT

Main Results Outline of Proof of Critical Density Outline of Proof of Non-uniqueness

Scaled CTT

Main Results Outline of Proof for Family of Metrics Outline of Proof of Negative Yamabe or Non-uniqueness

Final Remarks

The following are are interesting questions regarding the non-uniqueness analysis of the scaled CTT equations.

- What is the first non-zero term in the Taylor expansion of λ(s)?
- What effect does \(\tau\) have on the above analysis?
- How can one rigorously construct metrics satisfying $R(g_0) = 0$ with no conformal Killing fields?
- What affect does the size of σ have on the solution theory of the constraints?

Caleb Meier

The Einstein Constraints The Conformal Formulation Solution Theory for Closed M

Bifurcation Theory

Liapunov-Schmid Reduction

Unscaled CTT

Main Results Outline of Proof of Critical Density Outline of Proof of Non-uniqueness

Scaled CTT

Main Results Outline of Proof for Family of Metrics Outline of Proof of Negative Yamabe o Non-uniqueness

Final Remarks

Relevant Manuscripts

[1] P. T. Allen, A. Clausen, and J. Isenberg.

Near-constant mean curvature solutions of the Einstein constraint equations with non-negative Yamabe metrics. *Classical Quantum Gravity*, 25(7):075009, 15, 2008.

[2] T. W. Baumgarte, N. Ó Murchadha, and H. P. Pfeiffer.

Einstein constraints: uniqueness and nonuniqueness in the conformal thin sandwich approach.

Phys. Rev. D, 75(4):044009, 9, 2007.

[3] Y. Choquet-Bruhat.

Einstein constraints on compact *n*-dimensional manifolds. *Classical Quantum Gravity*, 21(3):S127–S151, 2004. A spacetime safari: essays in honour of Vincent Moncrief.

[4] Y. Choquet-Bruhat, J. Isenberg, and D. Pollack. The constraint equations for the Einstein-scalar field system on compact manifolds. *Classical Quantum Gravity*, 24(4):809–828, 2007.

[5] A. Fischer and J. Marsden. Deformations of the scalar curvature. Duke Math J., 42:519–547, 1975.

Caleb Meier

The Einstein Constraints The Conformal Formulation Solution Theory for

Bifurcation Theory

Liapunov-Schmidt Reduction

Unscaled CTT

Main Results Outline of Proof of Critical Density Outline of Proof of Non-uniqueness

Scaled CTT

Main Results Outline of Proof for Family of Metrics Outline of Proof of Negative Yamabe of Non-uniqueness

Final Remarks

[6] M. Holst, G. Nagy, and G. Tsogtgerel.

Far-from-constant mean curvature solutions of Einstein's constraint equations with positive Yamabe metrics. *Phys. Rev. Lett.*, 100(16):161101, 4, 2008.

[7] M. Holst, G. Nagy, and G. Tsogtgerel.

Rough solutions of the Einstein constraints on closed manifolds without near-CMC conditions.

Comm. Math. Phys., 288(2):547-613, 2009.

[8] J. Isenberg.

Constant mean curvature solutions of the Einstein constraint equations on closed manifolds.

Classical Quantum Gravity, 12(9):2249-2274, 1995.

[9] J. Isenberg and V. Moncrief.

A set of nonconstant mean curvature solutions of the Einstein constraint equations on closed manifolds.

Classical Quantum Gravity, 13(7):1819–1847, 1996.

[10] D. Maxwell.

Rough solutions of the Einstein constraint equations on compact manifolds. *J. Hyp. Diff. Eqs.*, 2(2):521–546, 2005.

[11] D. Maxwell.

A class of solutions of the vacuum einstein constraint equations with freely specified mean curvature.

Caleb Meier

The Einstein Constraints The Conformal Formulation Solution Theory for Closed M

Bifurcatior Theory

Liapunov-Schmidt Reduction

Unscaled CTT

Main Results Outline of Proof of Critical Density Outline of Proof of Non-uniqueness

Scaled CTT

Main Results Outline of Proof for Family of Metrics Outline of Proof of Negative Yamabe or Non-uniqueness

Final Remarks

Available as arXiv:0804.0874 [gr-qc], 2008.

[12] D. Maxwell.

A model problem for conformal parameterizations of the Einstein constraint equations.

Comm. Math. Phys., 302(3):697-736, 2011.

[13] C. Meier and M. Holst.

An alternative between non-unique and negative Yamabe solutions to the conformal formulation of the Einstein constraint equations. 2012.

[14] C. Meier and M. Holst.

Non-uniqueness of solutions to the conformal formulation. 2012.

[15] D. M. Walsh.

Non-uniqueness in conformal formulations of the Einstein constraints. *Classical Quantum Gravity*, 24(8):1911–1925, 2007.

