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APPLICATIONS OF BIFURCATION THEORY TO THE
EINSTEIN CONSTRAINT EQUATIONS

CALEB MEIER
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where L = divL.

Slide 30: The problem with the proof is that if you have some graph of the
solution space (see figure 1), we know we have solutions for small A (of the
equations on slide 24), but the solutions may not be in the neighborhood of
(1,0). However, it is conceivable they live in a neighborhood of some («,0) for
some « sufficiently small. This came to my attention because the statement of
the theorem as I gave contradicts the case when 7 = 0 and o # 0. In that case,
solutions exist for positive scalar curvature metrics, but do not exist for Yamabe
Zero or negative metrics.

Slide 32: See figure 2. I want my solution curve to be more exciting than just
constant, sitting at the critical solution (¢.,0). I want it to either cross (into
negative Yamabe metrics) or double back (to get non-uniqueness). This is why I
need analyticity.
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The Einstein Constraint Equations

Using the 3 + 1 decomposition of spacetime, one can formulate the
Einstein Equations as an initial value problem where the initial data
CaeLB e consists of a Riemannian metric J.» and a symmetric tensor k, on a
specified 3-dimensional manifold M.

The Einstein . o N S X
Constraints Like Maxwell’'s equations, the initial data g., and k,, must satisfy

constraint equations, where the constraints take the form

Definition 1

R+ k®kap + K = 25p, (1)
Dpk® — D%k = k2. 2

Here R and D are the scalar curvature and covariant derivative
associated with J.p, k is the trace of k., and p and j are matter terms
obtained by contracting the stress energy tensor with a vector field
normal to M.
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The Conformal Method

The York conformal decomposition splits initial data into freely

Caleb Meier specifiable pieces plus 4 pieces determined by the constraints. First
conformally transform the metric g, to obtain:
L] gab = ¢4gab;
oS m 7= kg™ =

Then decompose kas into its trace and its symmetric, trace-free part Jab:
- I’%ab gabA 7ab
Then rescale the symmetric, trace free tensor to obtain a new

symmetric, tracefree tensor 120, where

- 7ab _ ¢710/ab'
Using a general algebraic result, we may decompose /% in the following
way:

™ /ab Jab_’_ﬁwab [:Wab DaW + Db gakawk’

where 02 is symmetric, traceless and divergence free (Dyo® = 0).
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Unscaled CTT Formulation

Making the above substitutions for lA(ab into the constraint equations

OR 4+ 22 — kpk® — 2kp =0, D32 — Dpk® — kj2 =0,

and using the fact that °R = ¢~5(®R¢ — 8A¢), we obtain a coupled
elliptic system for the conformal factor ¢ and w?:

The Conformal
Formulation

Definition 2 (Unscaled CTT Equations)

—8A¢ + Ro + gr%s — (0ab + (LW) ) (0% + (LW)®)p ™7 — 2kpg° = 0,

2 o
= Da(£w)® + Z¢°D°r + 1'%} = 0.
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Scaled CTT Formulation

Making the same substitutions as in the unscaled case and letting

p=¢% and J7=09¢ "%

Formulation we obtain the more standard scaled CTT formulation of the constraints:

The Conformal

Definition 3 (Scaled CTT Equations)

—8A¢ + R¢ + 27%5 = (b + (LW)ap) (0% + (Lw)*)p™" = 2p9™% =0,

— Da(Lw)? + §¢6Db7 +r® = 0.
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Free data and Determined Data

Both (2) and (3) are determined systems of elliptic PDE with free data:

Caleb Meier

9ab - conformally related metric,
B 0. - Symmetric, traceless, divergence free tensor,
m 7- the mean curvature function,
Pt m j, j°- energy density and momentum current density
and determined data:
m ¢ - conformal factor (unknown portion of metric)
® w - unknown portion of extrinsic curvature Kzp.

By solving the unscaled CTT formulation for (¢, w), one obtains the
following physical solutions to the Einstein constraints:

u gab = ¢4gab

- Rab _ ¢710[Uab + (EW)ab] + %¢747_gab'
By determining solutions these equations one is parametrizing solutions
to the constraints by the freely specifiable data.
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Non-uniqueness of Unscaled Equations

Caleb Meier

Equations of the form of the Unscaled CTT equations arise in the study
of the Einstein-field equation [4] and in the conformal thin sandwich
formulation of the constraints with unscaled sources [15, 2]. In [14] we
consider the uniqueness properties of solutions to equations of this form
Solsion Theor o on closed manifolds. The motivation for this work stemmed from the

N following:

m The semilinear portion of unscaled CTT equations is not
necessarily monotone and Hamiltonian constraint can have
non-convex energy, so uniqueness is not expected.

m A partial of analysis of the non-uniqueness properties of equations
similar to (2) is given in [2, 15] in the asymptotically Euclidean
setting.
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Solution Theory for Scaled CTT Equations

Solution Theory for coupled, scaled CTT equations on closed M
depends greatly on (g, 7, o).

m 7 is constant, CTT equations decouple. Solution theory is
well-understood for all Yamabe classes and o in low regularity
Sotston Theony or setting. Solutions are unique when they exist. [Choquet-Bruhat,

Closed M Isenberg, Maxwell, Holst, Nagy, Tsogtgerel][3, 8, 10, 6]

m 7 is near-constant (near-CMC 197l < ¢). Solution theory is
well-understood for all Yamabe classes and ¢ in low regularity
setting. Solutions are unique when they exist. [Isenberg, Moncrief,
Allen, Clausen, Holst, Nagy, Tsogtgerel] [9, 1, 6]

m 7 is far-from-CMC (no restriction on 7). Solutions exist for low
regularity data in the event that g € ™ and ¢ is sufficiently small.
Solutions not necessarily unique. [Holst, Nagy, Tsogtgerel,
Maxwell][6, 7, 11]
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Non-uniqueness of Scaled Equations

In [13], we consider the uniqueness properties of the solutions obtained
in [6] to the scaled equations. The primary motivation for this work
stemmed from the following:

Solution Theory for

Closed M m The far-from-CMC existence results in [6] rely on the Schauder
fixed point Theorem, which do not guarantee uniqueness of
solutions.

m In [12], Maxwell showed that solutions to the scaled CTT
equations are non-unique for metrics in the zero Yamabe class
and families of low-regularity mean curvature functions (= € L* as
opposed to 7 € W' in [6]).
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General Approach

The approach to analyzing the uniqueness properties of both the scaled
and unscaled CTT equations in [14] and [13] is the same and is outlined
in the following steps.

Caleb Meier

Fix some one parameter family of data (gx, 7, o, px, j3), Where

AeR.
e Formulate the CTT equations as a nonlinear problem between
et Banac? spaces where solutions (¢, w) satisfy F((¢,w), \) = 0 for
some \.

Find solutions ((¢o, Wo), o) Where the linearization of F((¢, W), A)
has a one-dimensional kernel.

Apply a Liapunov-Schmidt reduction to parametrize solution curve
in a neighborhood of ((¢o, Wo), Xo)

Analyze solution curve using a Taylor series expansion or some
other means.
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Liapunov-Schmidt Reduction

Let X, A and Z be Banach spaces and U C X, V C A. Suppose
F: U x V — Zis anonlinear Fredholm operator of index zero with
respect to x that also satisfies

F(x0,X0) =0 for some (xo, Ao) € U x V,

dim ker(DxF(Xo, Ao)) = dim ker(DxF(xo0, X0)*) = 1.

X and Z decompose with respect to DxF(xo, A\o) and define projection
operators P and Q satisfying

P:X— X1 = kel’(DxF(Xo, )\o)), Q:Y—~ Yz = keI’(DXF(Xo,)\o)*).

Liapunov-Schmidt
Reduction

Then F(x, ) = 0 if and only if the following two equations are satisfied

QF(x,)) =0, &)
(I— Q)F(x,\) = 0.
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Liapunov-Schmidt Reduction

Write x =v+w, (X0 = W + W), where v = Px and w = (/ — P)x.
Apply Implicit Function Theorem to the operator

G(v,w,\)=(I— QF(v+w,\),
to conclude that there exists

¥ Ux V — W such that all solutions to G(v, w,\) =0
inUx W xV areof the form G(v, ¥(v,A),x) =0.

S Insertion of the function (v, X) into (3) yields a finite-dimensional
problem

®(v,\) = QF(v+(v,A),\)=0. (4)

With added conditions on F(x, ), one can apply the Implicit Function
Theorem to ®(v, \) to conclude that there exists

Yo U1 — V1, "Y(VO) - )\07 d)(Vy’Y(V)) =0.
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Parametrization of Solution Curve

Inserting v(v) into Eq. (4) we obtain
g(v) = QF(v 4+ ¥(v,7(v)), v(v))- ®)

By writing v = s + vp and inserting this into (5), we obtain the solution
curve

x(s) = vo + sbo + (v + sth, v(vo + st)), (6)
Liapunov-Schmidt )\(S) — fy(vo + SVO)~ (7)

Reduction

With added assumptions on F(x, ), we may determine A(0) to
determine second order Taylor expansions of

A(s) and f(s) =y (vo + sV, v(vo + S¥p)).
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Problem Considered

We consider the following one-parameter family of problems

— Ad+are + Na-¢® — awp ™ — 2mpe *¢® =0,
Lw 4+ Ab2¢® =0

on a closed manifold (M, gap).

We observe that Eq.(8) is a family of unscaled CTT equations with
specified data (g, At, o, e *$,0), where

Unscaled CTT

1 1
=_-R = —12
ap 8 5 a 127’ 5
1 ab ab 2 a
aw = gloa + (LW)ap][0% + (LW)*), br = S D°r.
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Set-Up of Problem

We reformulate Eq. (8) so that we can apply techniques from functional
analysis and bifurcation theory to analyze the problem. Define

_ 2 5 _ -7 _ se—AAD
F((o.w). ) = | TAOTaROEX GaT S See I L o)

Unscaled CTT We view (10) as a nonlinear operator between Banach spaces
F((6,W),X) : CK*(M) & CH*(TM) x R — CK=2%(M) & CF—2(T M),

where (k > 2). If F((¢,w), ) = 0, then ((¢,w), \) solves Eq. (8).
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Criterion for non-uniqueness

m Want to show that solutions to F((¢,w), A) = 0 are non-unique in
neighborhood of some point ((¢o, Wo), Ao).

m If X = (¢, w), Implicit Function Theorem says that if
Dx F((¢0,Wo), o) is invertible, then solution can be uniquely
parametrized by X in a neighborhood of ((¢o, Wo), Xo)-

Unscaled CTT

m In order for solutions to be non-unique, we must find a point where
DxF((¢o,Wo), Xo) is not invertible. ( Note that this condition is not
sufficient for non-uniqueness, only necessary.)
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Main Results: Existence of Critical Density

Caleb Meier

Theorem 4

Suppose that R and |o| are constant. Let DxF((¢,w), \) denote the

Fréchet derivative of (9) with respect to X = (¢, w) and let pc and ¢. be
defined by

RE R \*
=——— and == . 11
pe 24+/3r|o| % (247Tp> )

Then when p = pc, dim ker(DxF((#¢,0),0))) = 1 and it is spanned by
the constant vector [ !

Main Results

0
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Main Results: Non-uniqueness of Solutions

Theorem 5

Suppose that € C'»*(M) and let F((¢,w), \) be defined as in (10). Then if p¢
and ¢ are defined as in Theorem 4 and p = p¢, there exists a neighborhood of

((¢¢,0),0) such that all solutions to F((¢,w), A) = 0 in this neighborhood lie on
a smooth curve of the form

Caleb Meier

#(8) = ¢ + s+ %;\'(0)u(x)s2 +0(s%), (12)
w(s) = Z3(OV()S + O(s?),

As) = ()2 + 0,

Main Results

where u(x) € C>%(M) and 0 # w(x) € C>*(T.M). In particular, there exists a
6 > 0 such that for all0 < X\ < § there exist elements
(¢1,/\’W1,A), (¢2,/\,W2,A) € CZ’O‘(M) ® C2’°‘(TM) such that

F((#ix,Win),A) =0, for i€ {1,2}, and (¢1,x,W1,x) # (d2,x, W2, x)-
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Outline of Proof for Critical Density

Define the polynomial

Caleb Meier

7

1 _
a(x) = apx — gozx — 2mpex’,

where p¢ is to be determined. Then we do the following:

m Require that g(x) have a single, positive double root. This condition
determines ¢¢, pc.

m Apply the maximum principle to the problem

]
D¢ = ape — 50%—7 — 27p¢°, (13)

Outiine of Proof of
Critical Density

when p > p¢ to conclude no solutions exist.

m Apply method of sub-and super-solutions to Eq. (13) when p < p¢ to
conclude solutions exist.

m Compute Dy F((¢c,0),0) and use properties of g(x) to conclude that it
has a one-dimensional kernel
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Non-uniqueness Proof

Caleb Meier

m Show that the operator Dx F((¢¢,0),0) is a Fredholm operator between
C%%(M) @ C%>*(TM) and CO(M) & CO(TM).

m Use the fact that dim ker(Dx F((¢¢,0),0)) = 1 to decompose the domain
and codomain
C3%(M) @ C*>*(TM) =
ker(Dx F((¢c,0),0)) @ (R(DxF((¢c,0),0)*) N (C**(M) & C>*(TM))),
CO%(M) @ CO¥*(TM) =
(R(DxF((¢,0),0)) N (C**(M) & C**(TM))) & ker(DxF((4¢,0),0)*).

Outline of Proof of
Non-uniqueness
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Non-uniqueness Proof

m Apply the Liapunov-Schmidt Reduction and use the fact that

S Dy F((¢c,0,0) # 0 to parametrize solution curve in a neighborhood of
Caleb Meier

(¢¢,0,0)

m Use fact that D%, F((¢c,0,0)[, U] ¢ R(DxF((¢c,0,0)) to conclude that
A(0) # 0 to determine second order Taylor series of A(s), w(s) and
1(s) = ¥(dclo + sth, v(dclo + sih)) to get

#(S) = de + 5+ %5\(0)110()52 +0(s%), (14)

Outline of Proof of
Non-uniqueness

w(s) = %X(O)v(x)sz +0(s%),

A(s) = %A(O)sz + 0(s%),
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Analysis of Solution Curve

Caleb Meier

Asymptotic properties of solution curve ((¢(s), w(s)), A(s)) imply the
following:

m For s small, there will exist sy and s, such that A(s1) = A(s2)

m For s small, ¢(s) is one-to-one

These two properties imply that a saddle node bifurcation (or fold)
occurs at ((¢c, 0),0), and that there exists s, s, such that

A(s1) = A(S2) = Ao and ((¢(s1), W(s1), Xo) # ((9(s2), W(S2), Xo)-

s This implies that both ((#(s1), w(s1)) and ((¢(sz), w(sz)) satisfy the
unscaled CTT equations with specified data (g, o7, o, €795, %).
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Problem Considered

CelED M In case of Scaled CTT equations, we consider the one-parameter family
of nonlinear problems of problems

1 Mo 10 2 ab,—7 MK 3
—AA¢+§)\¢+ o7 ¢ —E(A o+ LW)p(X0 + LW)T¢ —TM’ =0,

2 2
Law + %D,\Tqbe + X252 =0. (15)

Eq. (15) represents the scaled CTT equations with a one-parameter
family of data (gx, 7», o, px, j3), Where g, is a one parameter family of
metrics satisfying R(g») = X and

Scaled CTT ™ = )\ZT, o)\ = >\20', Px = )\2/), and ]f = )\Zja.
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Set-Up

As in unscaled CTT case, we let

—Asd+ Aard + Mar ¢ — awap~’ — A2a,¢7 8

F((d),w),)\) = ]L>\W+)\2b-,—¢6 +)\2bj ’
where
1 1
ar =g, awr= é()\za + LW) (N0 + LW)?,
1 2 K .
ar = ﬁTz, b- = §D>\7'7 a, = va by = kj.

Solutions to scaled CTT equations satsify F((¢,w), ) =0 and
Scaled CTT F((d),W),)\) . Ck,oz(M) @ Ck,a(TM) % R — Ck—Z,Q(M) @ Ck_z’a(TM).
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One Parameter Family of Metrics Satisfying R(gx) = A

Using an Implicit Function Theorem argument, we have the following:

Theorem 6

Suppose that M is a closed 3-dimensional manifold that admits a
metric with positive scalar curvature. Then for A € U, where U is a
neighborhood of 0, there exists a one-parameter family of metrics (g»)
through go such that R(g») = . Moreover, g, : U — A" is analytic.

Theorem 6 shows that the one-parameter family of operators
F((¢,w), A) is meaningful, and by applying a Liapunov-Schmidt
reduction and analyzing the solution curve of F((¢,w),A) =0ina
neighborhood of ((1,0), 0), we have the following Theorem.

Main Results
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Main Results: Negative Yamabe or Non-uniqueness

Theorem 7

Caleb Meier Let M be a closed 3-dimensional manifold which admits both a metric
with positive scalar curvature and a metric go with zero scalar curvature
and no conformal Killing fields, where both metrics are contained in
AP, s >3+ %. Let (1,0, p,]) be freely specified data for the CTT
formulation of the constraints. Then in any neighborhood U of g, there
exists a metric g € WP and a A > 0 such that at least one the following
must hold:

m R(g) = X and solutions to the CTT formulation of the Einstein
Constraints with specified data (g, >, \c, X\2p, X?j) are
non-unique

®m R(g) = —\ and there exists a solution to CTT formulation of the
Einstein Constraints with specified data (g, \>7, \2a, A2p, \%j).

Thus, in any neighborhood of a metric with zero scalar curvature and no
conformal Killing fields, either there exists a Yamabe positive metric for
which solutions to the CTT formulation are non-unique or there exists a
Yamabe negative metric for which far-from-CMC solutions to the CTT
formulation exist.

Main Results
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Analyticity of R(g)

First show that the operator R : ASP — W°~2" is an analytic operator.

m We have that DR(g)h* = 0 for k > 8, where DXR(g) is the k-th
Frechet derivative of R at g and

k times

m This implies that the power series
i 1 p*R(ge) ¢
n
n=0

converges absolutely for arbitrary h € ASP.

Outline of Proof for

iy s m Taylor's Theorem then implies implies the analyticity of R.
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Outline of Proof for Family of Metrics

Construct one parameter family using an Implicit Function Theorem
argument

m Letting S*? denote all symmetric two tensors in W*P, the splitting
result in [5] implies that

S%P = ker(DR(go)) @ Ran(DR(go)™)

as long as go is non-flat.

m Using this result, for h € Ran(DR(go)*) small, go + h defines a
neighborhood of go in S*P and G(h, \) = R(go + h) — X is
well-defined. Apply Implicit Function Theorem to G(h, \) to obtain
(A) such that 0 = G(¢(A\), A) = R(go + ¥(\)) — A

B g\ = go + ¥(\) has same regularity as G(h, \).

Outline of Proof for
Family of Metrics
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Outline of Negative Yamabe or Non-uniqueness of Solutions

By design, linearization of F((¢,w), \) has a one-dimensional kernel at
((1,0),0) given that (M, go) has no conformal Killing fields.

m Use metric go to build one-parameter family g, with no conformal
Killing fields

m Verify that the operator F((¢,w), A) is analytic in a neighborhood
of ((1,0),0).

m Apply a Liapunov-Schmidt Reduction to obtain the following
solution curve in a neighborhood of ((1,0),0):

(¢(s), W(s)) = (s + 1) + ¥((s+ 1), ¥((s + 1))  (16)
A(S) =~((s+ 1)).

The curve in (16) is analytic for s € (-4, d), where § > 0
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Analysis of \(s)

Caleb Meier

m Inunscaled CTT case, we took a Taylor expansion of v(s) and
f(s) =¢¥((s+ 1), v((s+ 1)%)) and conducted an analysis to
determine which lower order terms were nonzero. In particular, we
were able to show that A(0) # 0 was the first nonzero coefficient in
Taylor series of A(s), which implied our non-uniqueness result in
the unscaled case.

m Scaled CTT case is not as amenable to this analysis. It is unclear
what the first nonzero term in Taylor expansion of A(s) is.

m Can use analyticity of A(s) and positive Yamabe, far-from-CMC
solution theory in [6] to draw some conclusions about

((¢(s), w(s), A(s)).

Outline of Proof of
Negative Yamabe or
Non-uniqueness
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Properties of \(s)

The function A(s) has the following three important properties:

m Solution theory in [6] implies that for Ao > 0 sufficiently small,
scaled CTT equations have a solution. Therefore, for \g > 0
sufficiently small, there exists s, > 0 such that A\g = A(So).

m By construction, A(0) = 0.
m There is no subinterval | C (-4, ¢) such that A(s) = 0 for each
s € I (follows from analyticity of A(s)).

The above three properties imply that either there exists A\g < 0 and sp
such that \(sp) = Ao or that there exists A1 > 0 and sy, s> such that
AN = )\(51) = )\(Sz).

Outline of Proof of
Negative Yamabe or
Non-uniqueness
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Possible Behavior of Solution Curve

The above analysis implies that for given data (go, 7, o, p, j%), where
R(go) = 0 and gy has no conformal Killing fields, we can always find a
metric g, in any neighborhood of gy for which one of the following
holds:

B R(gx,) = Ao < 0 and the scaled CTT equations with specified
data (g»,, \a7, N30, \ap, \&j?) have a solution (¢, w).

m R(gx,) = Ao >0and solutions to the scaled CTT equations with
specified data (gx,, \a7, Ao, \3p, A3j%) are non-unique.

Outline of Proof of
Negative Yamabe or
Non-uniqueness
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Final Remarks

Caleb Meier

The following are are interesting questions regarding the
non-uniqueness analysis of the scaled CTT equations.
m What is the first non-zero term in the Taylor expansion of A(s)?
m What effect does m have on the above analysis?

m How can one rigorously construct metrics satisfying R(go) = 0
with no conformal Killing fields?

m What affect does the size of o have on the solution theory of the
constraints?

Final Remarks
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