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(Riemannian) Penrose inequality: If (M3, g) is a complete asymptotically flat
(AF) manifold with boundary, with scalar curvature R ≥ 0 and with ∂M being
an outermost minimal surface (“horizon,” i.e. no other minimal surfaces contain

it.), then m ≥
√
|∂M |
16π

. We call this the (Riemannian) Penrose inequality because

this version is only for time symmetric slices. See figure 1. We get equality only
for a (Riemannian) slice of Schwarzschild.

It was originally proved by Huisken-Ilmanen using IMCF (inverse mean cur-
vature flow, i.e. dx

dt
= ν

H
). It was independently proved by Bray using conformal

flow. It was generalized to dimensions < 8 by Bray-L using conformal flow. There
is a more general version, the “spacetime” Penrose inequality, which is still open.

Today: Discuss an analog of this for asymptotically locally hyperbolic (ALH)
spaces.

The Schwarzschild solutions comes from a natural construction; we look for
spherically symmetric AF spaces with R = 0. We can write g = V (r)−2dr2 +

r2dgS2 . We then solve some ODE to get V =
√

1− 2m
r

for some parameter m,

the mass, to get R = 0. If m > 0, then (M = [2m,∞) × S2, g) is a complete
AF manifold with a horizon boundary. If m < 0 we’d be stuck with something
incomplete.

Instead, we can look for AH solutions with R = −6. In this case, we get

V =
√
r2 + 1− 2m

r
. Again, if m > 0, then we get (M = [rm,∞) × S2, g) is

a complete AH manifold with a horizon boundary (at V = 0). Similar things
happen for m = 0 or m < 0. This solution is called Schwarzschild AdS or
Kottler.

If we solve for R = −6, but replace (S2, gS2) with a surface with constant

curvature k̂, (Σ̂, ĝ), we get V =
√
r2 + k̂ − 2m

r
. If k̂ = 0, we still need m > 0

to get a good solution. But if k̂ = −1, we only need m > −1
3
√

3
in order for

(M = [2m,∞) × Σ̂, g) to be complete with horizon boundary. This is called
“generalized Kottler,” or “Kottler of genus g.”

These paces are asymptotically locally hyperbolic (ALH), in the sense that it
looks like a quotient of true hyperbolic space H3 near ∞. These ALH spaces
can have negative mass but still be interesting and physically relevant. Much
like Schwarzschild, these generalized Kottler metrics are vacuum static, meaning
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that there is a potential V such that −V 2dt2 + g solves the Einstein equations
with cosmological constant. This construction so far works in any dimension, but
we’re sticking with dimension 3 since our overall proof only works there.

Definition 0.1. (M3, g) is ALH if there is a surface (Σ̂, ĝ) with constant curva-

ture k̂, such that there is a compact K such that M \ K ' (1,∞) × Σ̂ with a
metric

g = (k̂ + ρ2)dρ2 + ρ2ĝ +
h

ρ
+O2(ρ−3).

The first two pieces are exactly the hyperbolic metric. The rest are error terms.
Here h is a symmetric 2-tensor on Σ̂ called the mass aspect tensor.

We define µ = 3
4
trhatgh as the mass aspect function, and m =

ffl
Σ̂
µ is the mass.

We use m̄ = supΣ̂ µ. We normalize our space to k̂ = 1, 0,−1. If k̂ = 0, then

|Σ̂| = 4π.

We will use the Huisken-Ilmanen approach using Geroch monotonicity of the
Hawking mass, mH . We construct a weak IMCF with Σ0 = ∂M . We then want
to show √

|∂M |
16π

= mH(Σ0) ≤ mH(Σt)→ m,

which gives the proof. The work is making sure the IMCF still has the properties
we want.

We will us a straightforward adaptation of the Hawking mass to R ≥ −6:

mH(Σ) : −
√
|Σ|
16π

(
1− g− 1

16π

ˆ
Σ

(H2 − 4)

)
.

Need the -4 to get monotonicity. One hopes we get the same kind of set of
inequalities, √

|∂M |
16π

(
1− g +

|∂M |
4π

)
= mH(Σ0) ≤ mH(Σt)→ mγ

where γ =

(
|Σ̂|
4π

)3/2

= [max{1, g− 1}]3/2.

What’s the problem with this approach? Neues found an AH example where
limt→∞mH(Σt) > m = mγ. This looks very bad. However, we observed that if
the mass aspect is negative, then this inequality reverses, which is exactly what
we want.

Theorem 0.2 (Neues-L). Let (M3, g) be a complete ALH manifold with boundary

and conformal boundary (Σ̂, ĝ) at infinity with genus g. Assume m̂ ≤ 0. If
R ≥ −6, ∂M is a horizon, and ∂M has a compact piece of genus g. Then

m̄ ≥ 1
γ

√
|∂M1|
16π

(
1− g + |∂M1|

4π

)
where ∂M1 is the piece of boundary with the correct

genus. We get equality only for generalized Kottler spaces.
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Corollary 0.3. Under the same hypotheses, m̄ > 0 for g = 0 or 1 and m̂ > 1
3
√

3

for g > 1.

We also get a new proof of a version of the AH PMT.
AF (Riemannian) PMT: 3 known proofs: Schoen-Yau, using minimal surfaces,

for n < 8. Witten, using spinors, for spin manifolds. Huisken-Ilmanen, using
IMCF, for n = 3. For AH PMT: Chrucsiel-Herzlich, Wang did the spinor way.
Andersson-Cai-Galloway used minimal surfaces to get m̄ ≥ 0. This work is using
the IMCF way.

Proof: If there is a minimal surface, we use Cai’s result. If not, we run IMCF
starting at a point.

Main application: static uniqueness

Theorem 0.4 (Israel, Müller zum Hagen-Robinsen-Seifert, Bunting-Mosseod-ul-Alam).
The only AF vacuum static initial data sets are Schwarzschild or Euclidean.

There are some related results for static uniqueness of hyperbolic space.

Definition 0.5. (M3, g, V ) is a complete vacuum static ALH initial data set if
−V 2dt2 + g solves Einstein system with cosmological constant Λ = −3. Also,
∂M = {V = 0}.

Fact: κ := |∇V | is constant on components of ∂M , and is called the surface
gravity.

For Kottler metrics, with k̂ = −1, there is a bijection between surface gravities,
which are in (0,∞), and masses, which are in ( −1

3
√

3
,∞).

Theorem 0.6 (Chrusciel-Simon). Let (M3, g, V ) be a vacuum static ALH ini-
tial data set. Assume ∂M is homeomorphic to the conformal boundary. Let
(M0, g0, V0) be the Kottler metric with the same surface gravity. If m(κ) < 0,
then |∂M | ≥ |∂M0| and m̄ ≤ m(κ).

These are in opposition to the ALH PMT as we’ve shown, and so

Corollary 0.7 (Neues-L combined with Chrusciel-Simon). Let (M3, g, V ) be a
complete vacuum static ALH initial data set. Assume ∂M is homeomorphic to
the conformal boundary and m(κ) < 0. Then (M, g, V ) is a generalized Kottler.
This is a uniqueness result.

Proof of Penrose inequality. The weak IMCF still works fine, but monotonicity
requires that χ(Σt) does not jump up. This uses Meeks-Simon-Yau. We need to
look at the long time behavior. See figure 2. We compactify, with s = ρ−1, by
setting g̃ = ρ−2g = s2g. The maximum height is certainly going to zero. We need
more work to show

mH(Σt) ≤ (4π)−3/2

(ˆ
Σ̃t

s−2

)1/2(ˆ
Σ̃t

µs

)
+ o(1) ≤ m̄(· · · )(· · · ) ≤ m̄

(
|Σ̃t|
4π

)3/2
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The last one is by Hölder’s inequality, which would go the wrong way, except
that m̄ is negative.
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