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Introduction

In this talk, we will discuss first some density theorems for the space of
asymptotically flat (AF) solutions to the Einstein constraint equations.

As time permits, we will discuss some applications of localized deformation
results, focusing on scalar curvature.

Applications include

(i) a proposition about Bartnik’s quasi-local mass,

(ii) scalar curvature and volume, and

(iii) deformations of P-scalar curvature of a metric measure space.
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The Constraint Equations

Recall the setup: M ⊂ (S , ḡ) is a hypersurface inside an
(n + 1)-dimensional space-time S. The space-time metric satisfies

Ric(ḡ)− 1
2R(ḡ) ḡ = T .

Initial data

The induced geometric data on M are given by g and π, where g is the
induced metric (we assume Riemannian), and π is the momentum tensor:
if K is the second fundamental form (with respect to a (local) time-like
unit normal vector nµ, then π = K − (trgK )g).

Define a scalar function µ by µ = Tαβn
αnβ, and the one-form J , by

J (X ) = −TαβnαX β, where X ∈ TpM.
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The Constraint Equations

We let Φ(g , π) =
(
R(g)− ‖π‖2

g + 1
n−1 (trg (π))2 , divgπ

)
to be the

constraints operator.

As a consequence of Gauss and Codazzi (and Einstein equation) we have
the constraint equations

The constraint equations

Φ(g , π) = (2µ,J ).

The dominant energy condition (DEC)

µ ≥ |J |g .

Vacuum constraints

Φ(g , π) = (0, 0).
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The constraint equations

Overarching goal: understand the space of solutions to the Einstein
constraint equations:

(1) Interesting solutions yield interesting space-times.

Examples: (i) “Small” initial data that will evolve to space-times that are
asymptotically simple (Penrose) (Chruściel-Delay, CQG (2002); C., Ann.
Henri Poincaré (2007))

(ii) Asymptotically flat initial vacuum data free of trapped surfaces that
evolves a trapped surface, following Christodoulou (Li-Yu, arXiv (2012))

(2) Even the time-symmetric, vacuum case (Reduce to scalar curvature
equation: R(g) = 0) is interesting: geometry of such AF solutions,
PMT/Penrose, isoperimetric surfaces, etc.

For another example, recall that it is a very recent result that on R3, this
moduli space is connected, and uses Ricci flow with surgery (F. Codá
Marques, Ann. of Math. (2012)).
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The constraint equations

There are various ways to produce solutions to the constraints:

(0) Take a slice inside known space-times.

(1) Conformal method and variants: elliptic (cf. talks by R. Gicquaud and
C. Meier, and D. Maxwell’s talks at Introductory Workshop)

(2) Quasi-convex foliation: parabolic (Bartnik, Sharples, Smith-Weinstein)

(3) Gluing methods: New solutions from old...
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The constraint equations

(3) Gluing methods: New solutions from old!

(i) Isenberg-Mazzeo-Pollack, Isenberg-Maxwell-Pollack (conformal)

(ii) Asymptotic and/or localized gluing (C., C.-Schoen, Chruściel-Delay,
Carlotto-Schoen)

• N-body initial data (Chruściel-C.-Isenberg, Carlotto-Schoen)

• Density theorems with prescribed asymptotics (C., C.-Schoen,
Chruściel-Delay, C.-Huang)

(iii) Hybrid (Chruściel-Delay, Chruściel-Isenberg-Pollack, Cortier,
Chruściel-Pacard-Pollack, C.-Eichmair-Miao)
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Density theorems for the AF constraints

There are LOTS of solutions to the constraints!

In the AF setting, it is often convenient, if not instructive, to simplify the
asymptotics by deforming within the space of solutions in topologies suited
to one’s situation.

Remark/open problem: In the asymptotically hyperboloidal setting, this
seems much more complicated.

Definition of AF

In an appropriate coordinates x on an asymptotic end (exterior of a ball),

|∂βx (gij(x)− δij)| = O(|x |−q−|β|), and |∂γx πij(x)| = O(|x |−1−q−|γ|),
q ∈ (n−2

2 , n − 2]. We can also formulate this in weighted Sobolev and
Hölder spaces.

In the AF case, the asymptotics are in some sense driven by the ADM
energy-momenta, which we will see.
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Weighted spaces

(M, g) asymptotically flat. Take σ ≥ 1 a smooth function which in AF
coordinates in any end is σ(x) = |x |.
Define a weighted Lp norm, p ≥ 1:

‖u‖p
Lp−τ

=

∫
M

(|u|στ )pσ−n dvg .

Weighted Sobolev norm

‖u‖
W k,p
−τ

=
∑
|γ|≤k

‖Dγu‖Lp−|γ|−τ .

This gives a Banach space W k,p
−τ (M, g).
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Density theorems for AF constraints

Recall the integrals which give the ADM energy, linear momentum, and in
case of enough parity, the center of mass and angular momentum, of an
asymptotically flat solution to the vacuum constraints.

Energy-linear momentum

E =
1

2(n − 1)ωn−1
lim
r→∞

∫
{|x |=r}

∑
i ,j

(gij ,i − gii ,j)
x j

|x |
dAe

Pi =
1

(n − 1)ωn−1
lim
r→∞

∫
{|x |=r}

∑
j

πij
x j

|x |
dAe .

For |E | ≥ |P|, we define m =
√
E 2 − |P|2.
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Density theorems for AF constraints

Regge-Teitelboim conditions

In an appropriate coordinates x on an asymptotic end,
|∂βx (gij(x)− gij(−x))| = O(|x |−1−q−|β|), and
|∂γx (πij(x) + πij(−x))| = O(|x |−2−q−|γ|),
q ∈ (n−2

2 , n − 2]. We can also formulate this in weighted Sobolev and
Hölder spaces.

Under these conditions the angular momentum and center-of-mass are
well-defined. We let Yi be a basis of rotation Killing fields of Euclidean
space, such as x1 ∂

∂x2 − x2 ∂
∂x1 .
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Density theorems for AF constraints

Center-of-mass

Ec` =
1

2(n − 1)ωn−1
lim
r→∞

∫
{|x |=r}

∑
i ,j

[
x`(gij ,i − gii ,j)

x j

|x |

−
∑
i

(
gi`

x i

|x |
− gii

x`

|x |
)]

dAe

Angular momentum

Ji =
1

(n − 1)ωn−1
lim
r→∞

∫
{|x |=r}

∑
j

πjkY
k
i

x j

|x |
dAe
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Density theorems for AF manifolds

Asymptotic integrals

These asymptotic integrals are flux integrals, boundary terms for
integration of the constraints operator Φ(g , π) against elements of the
kernel of DΦ∗(ge ,0), where DΦ∗(ge ,0)(f ,X ) = (DR∗ge (f ), LXge). The kernel is
the direct sum of the span of the constant and linear functions, with the
space of Euclidean Killing fields.

For example, divgπ = divgeπ + Γ ∗ π = divgeπ + O(|x |−2−2q). In case of
R-T conditions hold, the error term is even to an extra order.

So...
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Density theorems for AF manifolds

Integrate by parts and use the Killing equation (and symmetry of π), B(r)
is the boundary term, which defines the angular momentum:

∫
r0≤|x |≤r

(divgπ)kY
k
i dx =

∫
r0≤|x |≤r

(πjk,j + O(|x |−2−2q)Y k
i dx

= B(r)− B(r0) +

∫
r0≤|x |≤r

O(|x |−2−2q)Y k
i dx

Without imposing any symmetry, the remaining bulk term is order
|x |−1−2q, and n−2

2 < q ≤ n − 2, so that 3− 2n ≤ −1− 2q < 1− n.

Integration in spherical gives |x |n−1 d |x |, so that we’re integrating between∫
|x |2−n d |x | and

∫
|x |β d |x | for β = −1− 2q + (n − 1) < 0.
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Density theorems for AF manifolds

Harmonic asymptotics

An initial data set (M, g , π) has harmonic asymptotics if outside a
compact set (in any given end) in asymptotically flat coordinates we have

gij = u4/(n−2)δij

πij = u2/(n−2)(Xi ,j + Xj ,i − (divge (X ))δij).

The energy and linear momenta are encoded in the expansions of u and X :

u(x) = 1 + A|x |2−n + O∗(|x |1−n)

Xi (x) = bi |x |2−n + O∗(|x |1−n).

It is easy to show E = 2A, and Pi = −n−2
n−1bi .

One can also expand uodd and X odd to obtain the center-of-mass and
angular momentum parameters, respectively.
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Density theorems for AF manifolds

We recall that the constraint equations yield a system of Poisson equations
for (u,X ), amenable to analysis.

Fundamental density result, roughly formulated

The set of solutions to the constraint equations with harmonic asymptotics
is dense in the space of all AF solutions to the constraints, in a suitable
topology in which the energy and linear momentum are continuous.

There are various precise versions of this.
• C.-Schoen: vacuum
• L.-H. Huang: with Regge-Teitelboim conditions
• Huang-Schoen-Wang: specifying angular momentum
• Eichmair-Huang-Lee-Schoen (also C.-Huang, in progress):
non-vacuum/dominant energy condition
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Density theorems for AF manifolds

Harmonically flat asymptotics (Schoen-Yau)

Suppose (M3, g) is AF, R(g) ≥ 0. For any ε > 0, there is ḡ within ε (in
W 2,p
−δ or C 2,α

−δ for p > 3, 1
2 < δ < 1), with R(ḡ) ≥ 0, harmonically flat near

infinity in each end, and with |m(g)−m(ḡ)| < ε.

Remark: H. Bray showed that one can further “bend” the metric (using a
clever and elementary superharmonic function argument) so that outside a
compact set it is exactly Schwarzschild. Doing so produces some
compactly supported positive scalar curvature. Keeping the vacuum
constraints while making the asymptotic end exactly Schwarzschild seems
to take a bit more work.
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Density theorem for AF manifolds

Example: the time-symmetric Einstein-Maxwell constraints in three
dimensions. The initial data is (M, g ,E ), with R(g) = 2|E |2g , divgE = 0.

Charged harmonic asymptotics

In suitable coordinates in an AF end, gij = u4δij and E i = u−6(gradgeφ)i ,

where u(x) = 1 + m
2|x | −

q2

8|x |2 + O∗(|x |−3) and φ(x) = q
|x | + O∗(|x |−2).

Used in Khuri-Weinstein-Yamada.

Theorem (C., 2000-2014)

Suppose that (M, g ,E ) satisfies the dominant energy condition
R(g) ≥ 2|E |2g and is source-free: divgE = 0. Given ε > 0, there is (ḡ , Ē )

on M with (1− ε)g ≤ ḡ ≤ (1 + ε)g , |E − Ē |g < ε, and
|m − m̄|+ |q − q̄| < ε, which outside a compact set on any end solves the
constraints R(ḡ) = 2|Ē |2ḡ , divḡ Ē = 0, and has charged harmonic
asymptotics,.
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Density theorem for AF manifolds

As another illustration, here is a very interesting density theorem,
specifying arbitrary changes in the angular momentum/center of mass.

Theorem (Huang-Schoen-Wang)

Suppose (M3, g , π) is a nontrivial vacuum initial data set satisfying the
Regge-Teitelboim condition. Given any vectors α, γ ∈ R3, there is a
vacuum initial data set (ḡ , π̄) close to (g , π) in W 2,p

−q ×W 1,p
−1−q, with

Ē = E , P̄ = P, J̄ = J + α, C̄ = C + γ.

Results in progress (C.-Huang)

Versions of the above with harmonic asymptotics, Regge-Teitelboim
condition, and dominant energy condition.
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Density theorems for AF manifolds

As another illustrative example, we consider a perturbation to strict
dominant energy condition, which is useful in proving the general positive
mass theorem.

Theorem (Eichmair-Huang-Lee-Schoen)

Suppose (M, g , π) is AF and satisfies the dominant energy condition. For
any ε > 0, there is a γ > 0, and there is an AF initial data set (ḡ , π̄)
within ε of (g , π) in W 2,p

−q ×W 1,p
−1−q so that µ̄ > (1 + γ)|J̄ |ḡ .

The non-strict dominant energy condition can be tough to work with and
preserve.
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Density theorems for AF manifolds

There is another suite of density theorems that involves gluing and
localized deformations, in contrast to the conformal (and other various and
sundry) methods employed to produce the above theorems.

The genesis of the investigation was an existence question in one of Yau’s
problem sets, about the existence of vacuum time-symmetric initial data on
R3 which is precisely Schwarzschildian outside a compact set. (C., 2000)

A physics motivation

There was interest in constructing such data in hopes the evolution would
produce a non-trivial example of an asymptotically simple vacuum (purely
radiative) space-time, in the spirit of Cutler-Wald for Einstein-Maxwell (as
cited earlier: Chruściel-Delay, 2002; C., 2007; based on work of Friedrich,
or now Anderson-Chruściel).

Instead of just an existence result, we obtained a density theorem.
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Density theorems for AF manifolds

Theorem (C.)

Let (M, g) be asymptotically flat, with R(g) = 0 (complete, with positive
mass, or just an AF end with non-zero mass, say). Given any compact set
K ⊂ M, and given any ε > 0, there is a metric ḡ within ε of g (weighted
norm, or quasi-isometric, say), with R(ḡ) = 0, so that in K , ḡ = g , and in
AF coordinates near infinity in any end, ḡ has the form

ḡij =
(

1 + m̄
2|x−c̄|n−2

)4/(n−2)
δij , for appropriate m̄ ∈ R and c̄ ∈ Rn, with

|m − m̄| < ε.

Generalized to full vacuum constraints by C.-Schoen, Chruściel-Delay;
Einstein-Maxwell (C., in progress, still, alas...2014!) The asymptotic model
family in these cases is Kerr, or Kerr-Newman, or any admissible family.

NOTE: the data is preserved inside a (large) compact region.
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Density theorems for AF manifolds

Technique for construction: controlled localized deformation result for the
constraints operator. Given δΦ = (2δµ, δJ ) small and compactly
supported inside a domain Ω, we want to solve for (h, ω) supported in Ω
so that Φ(g + h, π + ω) = Φ(g , π) + δΦ.

Basic estimate

The key ingredient, as R. Schoen mentioned in his talk, is an injectivity
estimate of the form ‖(f ,X )‖ ≤ C‖DΦ∗(g ,π)(f ,X )‖′ in suitable (weighted)
spaces.

The above holds in case DΦ∗(g ,π) has trivial kernel in these spaces, such as

in the case R. Schoen discussed (joint work with A. Carlotto).

The estimate is used to solve the linearized problem DΦ(g ,π)(h0, ω0) = δΦ
variationally.
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Density theorems for AF manifolds

Basic estimate

‖(f ,X )‖ ≤ C‖DΦ∗(g ,π)(f ,X )‖′.

In approximation arguments, we want a uniform C for a family of (g , π). If
the elements in the family approach a stationary initial data set on the
domain of interest, so that the limiting operator admits kernel, then the C
above cannot be uniform, but can only be uniform when working
transverse to this limiting (co)-kernel.

Projected problem

In the case with non-trivial kernel, there is a finite-dimensional subspace
K∗ (kernel elements suitably cut off, say), so that it is possible to solve,
with compact support, Φ(g + h, π + ω)− (Φ(g , π) + δΦ) ∈ K∗.

One can measure how far one is from solving the full problem by
projecting this difference into K in L2(Ω), say.
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Density theorems for AF manifolds

Approximate (co)-kernel

For the density theorems via gluing, the approximate solutions produced by
gluing approach flat/Minkowski initial data, and so there is a kernel, of
dimension ten in case of the three-dimensional constraint equations.

The kernel K corresponds precisely to...the energy, linear momentum,
angular momentum and center of mass! (Recall what we saw earlier about
projecting the constraints operator into the (co)-kernel.)

We remark that in the work of Li and Yu, an approximate family is
constructed which approaches a Schwarzschild metric, where the cokernel
is four-dimensional, corresponding the mass and angular momentum
(static potential, and rotational symmetries).
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Density theorems for AF manifolds

In other words: the PDE methods allow us to solve the constraints up to a
finite-dimensional piece. This finite dimensional piece is of the form, where
the gluing and compactly supported perturbation is on r ≤ |x | ≤ 2r , of the
form

B(2r)− B(r) + error.

At |x | = 2r is the asymptotic model (Schwarzschild or Kerr), and at
|x | = r is the original data...or the other way around if you like! Anyway...

End game

By doing these integrals for all dimensions of the co-kernel, we see that by
varying the parameters energy, momentum, angular momentum, center of
mass, we can make all the integral vanish—i.e. solve the vacuum
constraints!

Note that E and |P| will be close to that of the given initial data, so that
E > |P| will be preserved in the construction.
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Density theorems for AF manifolds

Admissible asymptotic family

An admissible family is one for which we can effectively vary the
parameters to make the above construction work.

Example: Kerr (Chruściel-Delay).

Expected examples of admissible families with harmonic asymptotics
(C.-Huang).
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Density theorems for AF manifolds

From what we described above, it would seem natural that we would, for
the purposes of gluing an asymptotic end onto a given initial data set,
assume R-T asymptotics to start, so that the center-of-mass and angular
momentum are well-defined.

It turns out you don’t need to do this! The upshot is that (as in other
density theorems, cf. e.g. Huang, C.-Huang) when R-T is assumed, the
density theorem can be carried out in a topology respecting the R-T
condition, and the resulting configuration has center-of-mass and angular
momentum close to that of the original. But natural density theorems still
exist in spaces where the energy-momentum is well-defined.

Theorem/Observation (Chruściel-C.-Isenberg)

The set of vacuum initial data with Kerr ends is dense in the space of AF
vacuum initial data, without assuming the R-T condition.
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Density theorems for AF manifolds

Let’s briefly discuss the mechanism for this, and then make a couple final
remarks.

The gluing happens in an annulus Ar = {r ≤ |x | ≤ 2r}, say. Let
φr : A1 → Ar be φr (x) = rx . Let g r = r−2φ∗r g and πr = r−1φ∗rπ.

r

∫
|x |=1

πrjkY
k
i

x j

|x |
dAe = r−1

∫
|x |=r

πjkY
k
i

x j

|x |
dAe

which as we saw earlier is (from the bulk term estimate) r−1B(R0) + error,
where the error term is O(rβ) for β < 0, or O( log r

r ), in either case o(1).

In the R-T case, get better estimate O(r−1).
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Density theorems for AF manifolds

This translates after re-scaling as follows: while |∆E | (the change in ADM
energy from the initial to the exterior Kerr value) is small, say O(r−1), the
parameter values of ∆J and ∆c for the exterior Kerr might be reasonably
large.

Of course, if the initial data is not R-T, then it may not have possessed an
initial J and c to start, so this is reasonable.

Theorem (C.-Huang)

The space of vacuum AF data with infinite J and c is W 2,p
−q ×W 1,p

−1−q
dense in the space of vacuum data.
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Density theorems for AF manifolds

We make some concluding remarks on N-body configurations.

R. Schoen described his work with A. Carlotto, constructing N-body initial
data sets, in which each body is placed inside a cone region, and various
cone regions can be placed into a single AF end with flat data in between.

CCI construction

The N-body configurations of Chruściel-C.-Isenberg are constructed
differently: we construct template regions which are Kerrian near N-points
(think Kerr in annuli around N points) of various parameter values. We
glue these to a master exterior Kerr, and fine tune the parameters (as
discussed above) to solve the vacuum constraints, leaving Kerr solutions
around each point, and near infinity. Given N bodies, then, we can first
glue each body into a Kerr exterior, and then insert into the template.
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Density theorems for AF manifolds

Remark: Using the CCI observation—don’t need RT or harmonic
asymptotics to glue at infinity—it appears that one could glue the
Carlotto-Schoen data to a Schwarzschild exterior region, of total mass
roughly the sum of the masses of the N bodies, near infinity.

The procedure must smear out the part of the metric carrying the mass
from the transition regions between the cones.

This gives examples (there are others) with a flat region, and a
Schwarzschild exterior, with zero scalar curvature.

There are LOTS of solution of the constraints!
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