


STABILITY AND INSTABILITY OF SPATIALLY
HOMOGENEOUS SOLUTIONS IN THE T2 SYMMETRIC

SETTING

HANS RINGSTRÖM

I’m worried about future asymptotics of T2 spacetimes.
Personal motivation: A general motivation is that in cosmology, we use spa-

tially homogeneous spaces to model cosmology. (Here will mostly use vacuum
without cosmological constant). A more specific motivation is this conjecture:
Let (M, g) be vacuum with constant mean curvature (CMC) spatially compact
slices Στ . We say τ → 0− is the expanding direction. We assume the future is
future geodesically complete. On these slices, we get metrics ĝτ on Στ . We can
think of these as defined on some Σ since all the slices are diffeomorphic. It is
then natural to rescale the metrics to see behavior; we call these rescaled metrics
gτ , which are on Σ. To do this, we take proper time squared and multiply it
by the metric. We decompose Σ = G ∪ H where G is graph manifold pieces,
and H is hyperbolic pieces. We expect that gτ converges on H (complete, finite
volume), but collapses on G. We should get isotropization on the H pieces. Thus
the average observer sees something isotropic. Everything known fits into this.

Model case: Milne model: −dt2 + t2gH . We get the desired picture. If you
divide by t2, you see the convergence we expect. This behavior is stable/ is an
attractor. Despite this model, we don’t have a large class of solutions which have
both the convergence and collapse behavior. What would be the model case for
the graph part? [Answer: Lots of things we might expect don’t work because
they’re unstable.]

Q: Is there a model solution in the graph manifold setting? Kasner solutions
collapse and are graph manifolds, but they are not stable, and so aren’t good
models. This leads us to consider stability and instability.

We consider a metric in areal coordinates:

g = t−1/2eλ/2(−dt2 +α−1dθ2) + teP [dx+Qdy+ (G+QH)dθ]2 + te−P (dy+Hdθ)2

on (t0,∞)× T3 and t0 ≥ 0.
Thus we get polarized solutions if Q = 0. We get T3-Gowdy solutions if

G = H = 0.
We next consider the Einstein equations in these coordinates.
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(2)
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t
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αθ
2
Qθ +

αt
2α
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α
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(4)

λt = t[P 2
t + αP 2

θ + e2P (Q2
t + αQ2

θ)]−
eP+λ/2k2

t5/2

(5)
λθ = 2t(PtPθ + e2pQtQθ)

[I’m fairly certain these equations are correct, but it was fast. There may be
mistakes.] The 5th equation is a constraint equation. If k = 0, we get a T3-Gowdy
solution. This assumption makes the equations easier since they decouple.

Pseudo-homogeneity: We say a solution (P,Q, λ) is pseudo-homogeneous if
they are independent of θ. There is then a natural energy,

Ĥ =

∫
S1

(
t2α−1/2

[
P 2
t + αP 2

θ + e2P
(
Q2
t + αQ2

θ

)]
+ 3α−1/2 +

α−1/2eP+λ/2k2

t3/2

)
dθ.

For this energy, ∂tĤ ≥ 0 but ∂t(t
−2Ĥ) ≤ 0.

Some people have shown that solutions are inextendible to the future. Berger
et al showed that solutions are future global.

Results: Polarized, spatially homogeneous T3-Gowdy: In this case, the equa-
tions become ∂t(tPt) = 0 and λt = tP 2

t . Thus P (t) = r∞ ln t + CP and λt =
r2∞ ln t+ Cp. This includes all Kasner solutions. Are these solutions stable?

If we add a spatial variation we get

Ptt+
1

t
Pt − Pθθ = 0

λt = t(P 2
t + P 2

θ )

λθ = 2tPtPθ

Then these equations have solutions P (t, θ) = r∞ ln t+ cp + t−1/2ν(t, θ) + ψ(t, θ)
where vtt = vθθ = 0,

∫
S1 ν(·, θ)dθ = 0 and ψ = O(t−3/2) and

∫
S1 ψ(·, θ)dθ = 0.

There is a unique solution with this data at infinity.
The leading order is spatially homogeneous, but it’s not okay if we’re looking

at λ. If ν is not identically zero, then λ goes to infinity linearly. Thus all the
expansion is in one direction. (instead of 2 directions and 1 contracting as normal
for Kasner).

Polarized T2: Pseudo-homogeneous solutions with k 6= 0: there exists a unique
(pseudo-homogeneous) solution with the asymptotics in this paragraph. We take
constants cP , cλ, r∞ ∈ (−3, 1) and α∞ ∈ C∞(S1,Rt). We then have the properties
α(t, θ)→ α∞(θ), Pt − r∞ ln t− cp → 0, λ(t)− r2∞ ln t− cλ → 0.
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Proposition 0.1. Take (Pbg, λbg, αbg), a pseudo-homogeneous solution on (t0,∞)×
S1, K 6= 0. Let ta ∈ (t0,∞). Then there is an ε > 0 such that if (P,Q, λ) is a
non-pseudo-homogeneous solution, such that

‖P−Pbg(ta, ·)‖C1+‖δt(P−Pbg)(ta, ·)‖C0+‖(α−αbg)(ta, ·)‖C1+‖(λ−λbg)(ta, ·)‖C1 ≤ ε.

Then

lim
t→∞
‖α(t, ·)‖C0 = 0

lim
t→∞
‖P (t, ·)/ ln t+ 1‖C0 = 0

lim
k→∞
‖λ(tk, ·)/ ln tk − 5‖C0 = 0.

This is compared to

αbg(t, 0)→ α∞(θ) > 0

Pbg(t)/ ln t→ r∞

λbg(t)/ ln t→ r2∞

for pseudo-homogeneous solutions.

Thus, the slightest bit of spatial variation gives something very different.

Theorem 0.2. Consider a solution to (1) − (5) with K 6= 0 (i.e. not Gowdy).
If < α−1/2 > (the mean value over theta) is bounded, the solution is pseudo-
homogeneous.

This quantity is increasing, so it is either bounded or goes to infinity. Since
perturbations change the asymptotics of this, pseudo-homogeneity is unstable. In
short, spatially homogeneous T3-Gowdy is sitting unstably in general T3-Gowdy.
Etc. See figure 1. Thus there is no hope really, of these being good, stable, model
for graph manifolds.

Outline of proof of Theorem:
There is a nice energy which is increasing, as before. Let g = P + 1

2
λ− 1

2
lnα,

f = α−1/2eP+λ/2. Then

e<g> ≤< eg >

≤< f >

≤ 1

2π
k−2t3/2Ĥ

≤ Ct7/2.

Thus < g >≤ 7
2

ln t+ C. And so

1

2π

∫ t

t1

∫
S1

gtdθdt ≤
7

2
ln t+ C



4 HANS RINGSTRÖM

where t ≥ t1 := t0 + 2. Then∫ t

t1

∫
S1

s[P 2
t + αP 2

θ + e2P (Q2
t + αQ2

θ)]dθds ≤ C ln t

for t ≥ t1. A T3-Gowdy spacetime that satisfies this must be spatially homoge-
neous. Also, the mean of λ can’t grow faster than

√
t, unlike normally, where it

grows linearly. This is a general estimate that holds for any T2 metric.
If there exists an α0 > 0 such that α(t, θ) ≥ α0 for any (t, θ) ∈ [t,∞)×S1. Then∫ t

t1

1
s
Ĥ(s)ds ≤ C ln t for t ≥ t1. Since Ĥ is increasing, we have Ĥ ≤ C. This tells

you that L2 norm of [something] is bounded? and thus ‖P− < P > ‖C0 ≤ Ct−1.
Step 2: Prove that the solution has pseudo-homogeneous asymptotics. This

is long and hard, but let’s just assume this. Then exists a uniquely associated
pseudo-homogeneous solution. We want to prove that these are indeed the same.

Let’s explain in a simple special case, polarized T3-Gowdy. Let’s assume

lim
t→∞

t2
∫
S1

[(Pt − ∂tPhom)2 + P 2
θ ]dθ = 0.

Recall, t∂tPhom = [missed this]. If we let

ĤG =

∫
S1

(P 2
t + P 2

θ )dθ,

we get

dĤg

dt
= 2t

∫
S1

P 2
θ dθ.

Thus

ĤG(t) ≤ lim
t→∞

ĤG(t) = ĤG,hom,

where ĤG is increasing to that.
Moreover, A =

∫
S1 tPtdθ is conserved. By assumption, it must be the same for

both solutions. Thus

2πĤG,hom = A2

= t2
(∫

S1

Ptdθ

)2

≤ 2πt2
∫
S1

P 2
t dθ

= 2πĤG(t)− 2πt2
∫
S1

P 2
θ dθ

≤ 2πĤg,hom − 2πt2
∫
S1

P 2
θ dθ.

Thus 2πt2
∫
S1 P

2
θ dθ ≤ 0, and thus the spatial variation had to be zero to start.
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In the general case, life is not this nice. We can construct an energy between
the two solutions. We can prove a lower bound on the decay rate. Also, there
are conserved quantities, which we can use to get a lower bound on the kinetic
part of the energy. We then use monotonicity to get another bound. It follows
the same general type of idea. We write down a system of estimates, and can
iteratively improve them. We get a decay rate that is faster than the lower bound
from the energy estimates, and so the solutions must be the same.

On the other hand, positive cosmological constant very easily gives stability.


