


ASYMPTOTICALLY FLAT GRAPHS WITH SMALL MASS

LAN-HSUAN HUANG

We define an asymptotically flat graph as follows: take f : Rn → R with
|Df | → 0 and f → c or ∞ as |x| → ∞. Then Graph[f ] ⊂ Rn+1 has the induced
metric gij = δij + fifj.

Reily: The scalar curvature of this is R = ∂i

(
fiifj−fijfj

1+|Df |2

)
.

Lam: By the divergence theorem (see fig 1), we get c(n)m =
∫
Rn Rdx, the

ADM mass, where c(n) = 2(n − 1)ωn−1. This immediately gives the positive
mass theorem (PMT).

We also get the Penrose inequality: Let Σ = ∂Ω := {f−1(h)}. Thus

c(n)m =

∫
Rn\Ω

Rdx+

∫
Σ

|Df |2

1 + |Df |2
HΣ

where HΣ is the mean curvature of Σ in Rn × {h}.
Examples of AF graphs: Schwarzschild of mass m. Outside the minimal sur-

face, we have f(x) =
√
δm(|x| −m) for n = 3, =

√
2m(ln |x| +

√
|x2 − 2m) for

n = 4 and is O(|x|2−n
2 ) for n ≥ 5.

What about the rigidity case? H-Wu: HΣ has a sign. If ~H is the mean
curvature of the graph in Rn+1, then 〈 ~H ~HΣ〉 ≥ R

2
. Also, H ≥ 0. Thus HΣ has a

sign. This gives the rigidity case of PMT, since both terms are nonnegative, and
thus HΣ ≡ 0. This contradicts the boundedness of Σ, which implies that Σ = ∅
which implies f ≡ c.

What about stability for PMT? If the mass is small, what can you say about
the graphing function? We want that the graph is close to a plane.

Finster, Bray-Kath used a spinor argument to get a bound on the L2-norm of
curvature except a set of small measure. (These are for general AF manifolds,
not just graphs.)

Corvino: Assume a uniform bound on the sectional curvature in addition to
small mass. Then small mass implies that the AF manifold is diffeomorphic to
Rn.

Lee: Convergence as the mass goes to zero can’t be in a strong sense, since we
could have a long, thin neck after/below a minimal surface, as in fig 2. Assume
the AF manifold is conformally flat and scalar flat (outside a compact set). Then
the manifold is close to the Euclidean metric outside a compact set.

What about inside a compact set? Lee-Sormani: Suppose the AF manifold
is rotationally symmetric. Then small mass implies a compact set is close to
Euclidean space in the intrinsic flat distance. We also have to assume that there
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are no minimal surfaces inside the compact set. This actually means that it can
be embedded as a graph.

Joint work with Lee: What can we say about an AF graph with small mass?
When mass is small, we see that the total scalar curvature is small, and the

integral over the level set is small. The mass will give a bound for
∫

Σ
|Df |2

1+|Df |2HΣ ≤
c(n)m. If we didn’t have the |Df | term, there are elementary inequalities for this.

We have

c(n)m ≥
∫

Σ

|Df |2

1 + |Df |2
HΣ ≥

α2

1 + α2

∫
Σ∩{|Df |≥α}

HΣ.

Define V (h) = Hn−1(Σh) (Hausdorff measure) where Σh = {f−1(h)}. Then

V ′(h) =

∫
Σh

1

|Df |
HΣh

>
1

α

∫
Σh∩{|Df |<α}

=
1

α

(∫
Σh

HΣ −
∫

Σh∩{|Df |<α}
HΣ

)
.

Minkowski integral formula: Assume HΣ > 0 (we already had HΣ ≥ 0) and
either Σ is outer minimizing (Huisken) or Star-shaped (Guan-Li). Then∫

Σ

HΣ ≥
c(n)

2

(
V (h)

ωn−1

)n−2
n−1

.

Thus

V ′(h) >
c(n)

α

(
1

2

(
V (h)

ωn−1

)n−2
n−1

− (1 + α−2)m

)
.

This inequality is not optimal. For Schwarzschild graph, if we take

α0 = |Df | = (
1

2m

(
V (h)

ωn−1

)n−2
n−1

− 1)−1/2

and plug it in, we get the trivial inequality V ′ ≥ 0. The optimal inequality is
given by

α =
√

3

[
1

2m

(
V (h)

ωn−1

)n−2
n−1

− 1

]−1/2

.

If we plug in this α, we get

V ′(h) > c(n)
2m

3
√

3

[
1

2m

(
V (h)

ωn−1

)n−2
n−1

− 1

]3/2

Thus the leading power is n−2
n−1

3
2
> 1 if n ≥ 5. Thus, the area will blow up in

finite time. Thus we have a maximum height of f since V (h) must blow up in
finite time. This inequality is valid if h ≥ h0 where

1

2m

(
V (h0)

ωn−1

)n−2
n−1

− 1 = 0.
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This h0 is the height of the boundary of the horizon. Thus we have control outside
the horizon. We can also argue that V (h) can only go up, even where V ′ does
not exist.

See figure 3 for this case. We also know hmax − h0 ≤ Cnm
1

n−2 . Thus if m is
small, we know we’re close to flat.

For n = 3, 4, we don’t expect to get bound on maximal height, since for
Schwarzschild, this height is infinite. (This is work in progress.) See figure 4. We
get ellipticity of the linearized mean? curvature problem, since R ≥ 0. Thus, by
a comparison principle, the Schwarschild graph has to be above the graph of the
other one, if it touches somewhere on the boundary. See fig 5. We are worried
about the area of Σ getting large (large ovals), but a small ball still being all that
fits. So, for right now, we need to assume some uniformity assumptions, which
implies that V (h1) ≤ dV0, where V0 is the volume of the horizon in Schwarzschild.

For volume ODE, h1 − h0 ≤ c(d, n)m
1

n−2 .
How much control do you think you can get from small mass? Answer: Well,

probably need a weak norm, but perhaps outside a compact set you could do
better.

Under h0, that region, do you have a volume bound? No, the estimate on V ′(h)
doesn’t tell us anything.


