







## A JANG EQUATION APPROACH TO THE POSITIVE MASS THEOREM FOR ASYMPTOTICALLY HYPERBOLIC MANIFOLDS

### ANNA SAKOVICH

## 1. Spacetime PMT for AE initial data sets

**Definition 1.1.** The triplet (M, g, K) is an asymptotically Euclidean (AE) initial data set (i.d.) if (M, g) is a complete AE manifold  $(M \setminus C \simeq \mathbb{R}^n \setminus B_R$  and  $g_{ij} = \delta_{ij} + O(r^{-(n-2)})$  and  $K_{ij} = O(r^{-(n-1)})$ .

The dominant energy condition (DEC) is  $m \ge |J|_g$ , where  $\mu := \frac{1}{2}(\operatorname{Scal}^g - |K|_g^2 + (\operatorname{tr}_g K)^2)$  and  $J := \operatorname{div}^g(K - (\operatorname{tr}_g K)g)$ .

The ADM mass is

$$m_{adm} = \frac{1}{2(n-1)\omega_{n-1}} \lim_{R \to \infty} \int_{S_R} \left( \operatorname{div}^{\sigma} g - d(tr_{\sigma}g)D_R \right) d\mu^{\sigma}.$$

Spacetime PMT (positive mass theorem) conjecture for AE: If (M, g, K) is an AE i.d. satisfying the DEC, then  $m_{adm} \ge 0$ . Also,  $m_{adm} = 0$  iff (M, g, K) is i.d. for Minkowski space.

Strategy of proof (Schoen-Yau '81, n = 3): There is a reduction to the case when K = 0, i.e. to the Riemannian positive mass theorem (Schoen-Yau '79), in which case the DEC reduces to  $\text{Scal}^g \geq 0$ . Thus we need to construct  $(\tilde{M}, \tilde{g})$ such that  $\text{Scal}^{\tilde{g}} \geq 0$  and  $\tilde{m}_{adm} \leq m_{adm}$ . Then we can just apply the Riemannian positive mass theorem, and get the desired theorem immediately.

Construction: Let  $(M, \bar{g})$  be a graph of  $f : M \to \mathbb{R}$  in the product space  $(M \times \mathbb{R}, g + dt^2)$  with the induced metric. See figure 1. We extend the 2nd fundamental form by  $K(\partial_t, \cdot) = 0$ .

Observation: If  $H_{\bar{M}} = \operatorname{tr}_{\bar{M}} K$  and the DEC holds, then  $\operatorname{Scal}^{\bar{g}} \geq 2|q|_{\bar{g}}^2 - 2\operatorname{div}^{\bar{g}} q$ where q is some 1 -form measuring the difference between g and k. In terms of f, using the base coordinates, this equation becomes

$$\left(g^{ij} - \frac{f^i f^j}{1 + |df|_g^2}\right) \left(\frac{\operatorname{Hess}_{ij}f}{\sqrt{1 + |df|_g^2}} - K_{ij}\right) = 0$$

This is Jang's equation. We rewrite this as

 $H_g(f) - (\operatorname{tr}_g K)(f) = 0.$ 

If  $f: M \to \mathbb{R}$  exists and is  $C^3$ , then  $(\overline{M}, \overline{g})$  is an AE manifold, such that there exists u > 0 such that  $\tilde{g} = u^4 \overline{g}$  has  $\operatorname{Scal}^{\tilde{g}}$  and  $\tilde{m}_{adm} \leq m_{adm}$ .

#### ANNA SAKOVICH

An "entire solution" (on the whole manifold) doesn't need to exist, but the socalled geometric solution always does, and so the argument works with suitable modifications.

## 2. AH I.D. AND POSITIVE MASS CONJECTURE

Intuitively: (M, g) is asymptotically hyperbolic (AH) if  $M \setminus C \simeq \mathbb{H}^n \setminus B_R$  and  $g \to g_{\mathbb{H}}$  at  $\infty$  sufficiently fast. The model example is the upper unit hyperboloid in Minkowski spacetime. See figure 2. This space sits in  $(\mathbb{R}^{n,1}, -dt^2 + dr^2 + r^2 d\sigma)$ . We get  $g = K = g_{\mathbb{H}} = \frac{dr^2}{1+r^2} + r^2 d\sigma$ .

**Definition 2.1.** (M, g, K) is an AH initial data set if (M, g) is a complete AH manifold,  $M \setminus C \simeq S^{n-1} \times (R, \infty)$  such that  $g = \frac{dr^2}{1+r^2} + r^2(\sigma + \frac{m}{r^n} + h)$  where m is a 2 tensor on the unit sphere (that does not depend on r) called the mass aspect tensor. Also, h is an r dependent family of 2-tensors on  $S^{n-1}$ , with  $h_{\alpha\beta} = O(r^{-(n+1)})$ . We also require  $K = g + \gamma$ ,  $|\gamma|_{g_{\mathbb{H}}} = O(r^{-(n+1)})$ . Thus the leading order terms in g and K are the same. Note that umbilic initial data fits into this.

Spacetime positive mass conjecture for AH initial data: If (M, g, K) is an AH i.d. satisfying DEC, then

$$m_{AH} := c_n \int_{S^{n-1}} (\mathrm{tr}_{\sigma} m) d\mu^{\sigma} \ge 0$$

and  $m_{AH} = 0$  if and only if (M, g, K) is i.d. for a Minkowski spacetime.

Results available: Riemannian PMT: (K = g). If (M, g) is a complete AH manifold such that  $\operatorname{Scal}^g \geq -n(n-1)$  (DEC) then  $m_{AH} \geq 0$  and  $M_{AH}$  if and only if it is  $\mathbb{H}^n$ . This has been proven by Wang (2001) and Chrusciel-Herzlich (2003) under spin assumption, but in all dimensions. Andersson-Cai-Galloway (2008) proved it for  $3 \leq n \leq 7$  and  $\operatorname{tr}_{\sigma}m$  has a fixed sign (i, 0, j, 0 or =0). The general conjecture has been addressed by Zhang for n = 3 and spin assumption.

# 3. JANG'S EQUATION REDUCTION OF THE SPACETIME PMT FOR AH I.D. SETS

This is my own work in progress. It is inspired by ideas from "Bondi mass is positive" from Schoen-Yau '81.

In the model case,  $g = k = g_{\mathbb{H}}$ , the solution of Jang's equation is  $f = \sqrt{1 + r^2}$ . Clearly the induced metric is  $\bar{g} = g + df \otimes df = dr^2 + r^2\sigma = \delta$ . So this reduces to the Euclidean case! This is in agreement with our previous observation that  $\operatorname{Scal}^{\bar{g}} \geq 2|q|^2 - 2\operatorname{div} q$ . So, let  $f = \sqrt{1 + r^2} + \alpha(\theta, \phi) \ln r + \psi(\theta, \phi) + o(1)$  and plug it into Jang's equation. We get

$$\alpha = const = \frac{3}{8\pi} \int_{S^2} (\mathrm{tr}_{\sigma}) m d\mu^{\sigma} = 2m_{AH},$$
$$\Delta^{S^2} \psi = -\alpha + \frac{3}{2} \mathrm{tr}_{\sigma} m.$$

This tells us that we should look for a solution in the above form, with the above forms for  $\alpha$  and  $\psi$ .

To get this type of asymptotics, we need to construct barriers with those asymptotics. Barriers: For an upper barrier we pick  $f_+ : \{r \ge R\} \to \mathbb{R}$  such that it is a supersolution of Jang's equation, and  $\partial f_+ / \partial r|_{r=R} = -\infty$ . See fig 3. We similarly pick lower barrier. (In the AE case,  $f \to 0$  implies that the barriers are easy to find.)

We'll look for barriers in the from  $f_+ = \varphi(r) + \psi(\theta, \phi)$ . Jang's equation becomes a Riccati type ODE modulo some correction terms.

Geometric solution: We solve the following system:

$$H_g(f_n) - \operatorname{tr}_g(K)(f_n) = \tau_n f_n$$

on  $\{r \leq R_n\}$  and  $f_n = \varphi_n$  on the boundary,  $\{r = R_n\}$  where  $\tau_n \to 0, R_n \to \infty$ and  $f_- \leq \varphi_n \leq f_+$ . See figure 4. We get these  $f_n$ , but they may blow up on some sets  $\Omega_{\pm}$ , and so we may not have a proper solution, but we have a geometric solution. There is a Harnack inequality for these solutions, which says that each component is either a graph or a cylinder.

Assume  $f: M \to \mathbb{R}$  exists with no blowups. Let  $(M, \bar{g})$  be the graph of f. We need to show that it is an AE manifold. In the AE case, this can be shown just by looking at  $g + df \otimes df$ , using rescaling. Rescaling doesn't work on AH manifolds. However, we can write our manifold as a graph over the manifold given by  $f_{-}$ , and can use this to get the argument to work.

We can also show that  $\bar{m}_{adm} = 2m_{AH}$ . Let  $\tilde{g} = u^4 \bar{g}$ ,  $u = 1 + \beta/r + O(r^{-2})$ where  $\beta \leq -\alpha/4$  and  $\operatorname{Scal}^{\tilde{g}} = 0$ . We then have

 $0 \le \tilde{m}_{adm} = \bar{m}adm + 2\beta \le 2m_{AH} + \alpha/2 = m_{AH}$ 

which completes the proof.