Diversity and Equity: Assessment Challenges and Examples for English Learners

Maria Martiniello

Critical Issues in Mathematics Education 2013: Assessment of Mathematical Proficiencies in the Age of the Common Core Mathematical Sciences Research Institute, April 3-5, 2013 Assessing Content Mastery of English Learners in Mathematics: Basic Claim

Excessive linguistic complexity in mathematics word problems functions as a threat to the validity of test scores for ELs, therefore as a potential source of bias (August & Hakuta, 1997; Abedi & Lord, 2001, Martiniello, 2007, 2008). Research on Text Complexity, Differential Item Functioning (DIF) and Think-Alouds

- What are the linguistic (syntactic and lexical) features of items showing large difficulty differences favoring non-ELs over ELs with equivalent mathematics proficiency?
- What comprehension challenges do these linguistic features pose to ELs with different levels of English Language Proficiency?

Linguistic Features of DIF Items

SYNTACTIC

- Complex multi-clausal sentences
- Long noun phrases

LEXICAL

- Unfamiliar words and phrases (non-mathematical)
- **Polysemy** (words with different meanings)
- Home-related vs. School-related words
 - words or particular meanings of words not likely to be learned by ELs in their schooling in English (Martiniello, 2007, 2008, Martiniello & Wolf, 2010)

Features of DIF items

CONTEXT

 Cultural references and background knowledge

NON-LINGUISTIC

- Item layout
- Absence of non-linguistic schematic representations

(Martiniello, 2008, 2009)

Examples from State Assessments

Unfamiliar Vocabulary (School-related vs. Home-related words)

Source: Massachusetts Department of Education (2003) MCAS Test Grade 4 (items 8 and 30)

Mr. Garcia gave each of his students a notepad, a pencil, and a ruler on the first day of school. The chart below shows the different colors of the notepads, pencils, and rulers.

Notepads	Pencils	Rulers
Yellow	Red	Green
White	Blue	Purple
	Orange	

Colors of Notepads, Pencils, and Rulers

How many different combinations of 1 notepad, 1 pencil, and 1 ruler can Mr. Garcia make?

8

Every Saturday in the fall, Martin has to do 1 inside chore and 1 outside chore. The chores are listed below.

Inside Chores	Outside Chores
vacuum	rake
wash dishes	weed
dust	

How many different combinations of 1 inside chore and 1 outside chore can Martin make?

- A. 3
- B. 5
- C. 6
- D. 9

2

To win a game, Tamika must spin an even number on a spinner identical to the one shown below.

Are Tamika's chances of spinning an even number certain, likely, unlikely, or impossible?

- A. certain
- B. likely
- C. unlikely
- D. impossible

Polysemy and Syntactic Ambiguity

Polysemy:

The word ONE has different meanings depending on context

spinner identical to the <u>one</u> shown below

Here ONE is a **pronoun** replacing the word SPINNER

spinner identical to the **<u>spinner</u>** shown below

But, ONE also means the **numeral** 1 In think-aloud interviews, most ELs interpret ONE as the **#1**

Item Layout and Syntactic Relationships

Actual Item Layout

To win a game, Tamika must spin an <u>even</u> <u>number</u> on a spinner identical to the <u>one</u> <u>shown below</u>

This is clearer

To win a game, Tamika must spin an <u>even number</u> on a spinner identical to the <u>one shown below</u> Item Characteristic Curve Item 2 ICC

Examples from State Assessments

Cultural References and Background Knowledge (COUPON, RAISED)

Source: Massachusetts Department of Education (2003) MCAS

Coupon for \$1.00 off

Miguel wants to buy 3 bags of potato chips. Each bag of potato chips costs \$2.69. If he uses a coupon for \$1.00 off the price of one bag, how much will Miguel owe for the 3 bags of potato chips?

- A. \$1.69
- B. \$3.72
- C. \$7.07
- D. \$8.07

Polysemy: Raised for a shelter

18 The pictograph below shows the amount of money each fourth-grade class raised for an animal shelter.

Class	Amount Raised	
Ms. Smith	222222	
Mr. Powell	\$\$\$\$	
Ms. Carly	22222222	
Mr. Roper	222222	

Amount Raised by Each Class

If Mr. Powell's class raised \$20 and Mr. Roper's class raised \$30, how much money does one S represent?

- A. \$1
- B. \$4
- C. \$5
- D. \$20

Implications for Testing

Test construction

- Avoid unnecessary linguistic complexity not relevant to mathematics
- Refine linguistic complexity measures to include issues particular to ELs
 - (e.g. school vs. home vocab, polysemy, familiarity vs. frequency)
- Thorough item review by EL experts
- Test analysis/validation
 - Differential Item Functioning DIF studies for ELs
 - Routine use of Think-aloud protocols
 - Further validity research

References

- Martiniello, M. (2007). Linguistic complexity and Differential Item Functioning (DIF) for English Language Learners (ELL) in math word problems. *Dissertation Abstracts International: Section A. Humanities and Social Sciences, 68,* 2422.
- Martiniello, M. (2008) Language and the performance of English language learners in math word problems. *Harvard Educational Review*, 78 (2), 333–368.
- Martiniello, M. (2009). Linguistic complexity, schematic representations, and differential item functioning for English language learners in math tests. *Educational Assessment,* 14: 3, 160–179.
- Martiniello, M. (2010). Linguistic complexity in mathematics assessments and the performance of English language learners. In *Research Monograph of TODOS: Mathematics For All. Assessing English–Language Learners in Mathematics*. Volume 2. Monograph 2: Linguistic complexity in mathematics assessments. National Education Association.
- Martiniello, M. & Wolf, M. K. (2012). Exploring ELLs' understanding of word problems in mathematics assessments: The role of text complexity and student background knowledge. Book chapter in S. Celedón-Pattichis and N. Ramirez (Eds.), *Beyond good teaching: Strategies that are imperative for English language learners in the mathematics classroom. Reston*, VA: National Council of Teachers of Mathematics.
- Massachusetts Department of Education, MDOE. (2000). *Mathematics curriculum frameworks*. Retrieved from <<u>www.doe.mass.edu</u>>
- Wolf, M. K. & Leon, S. (2009). An investigation of the language demands in content assessments for English language learners. *Educational Assessment, 14 (3&4)*, 139–159.
- Wolf, M.K. & Martiniello, M. (Summer 2010). Validity and fairness of assessments for ELLs: The issue of language demands in content assessments. In *AccELLerate*! Volume 2: Issue 4, National Clearinghouse for English Language Acquisition (NCELA), George Washington University, Washington: DC. Retrieved from http://www.ncela.gwu.edu/files/uploads/17/Accellerate_2_4.pdf