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Ancient and Eternal Solutions

We will discuss ancient or eternal solutions to geometric
parabolic partial differential equations.

These are special solutions which exist for all time

−∞ < t < T where T ∈ (−∞,+∞].

They appear as blow up limits near a singularity.

Understanding ancient and eternal solutions often sheds new
insight to the singularity analysis
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Outline

In this talk we will address:

the classification of ancient solutions to parabolic partial
differential equations, with emphasis to geometric flows:
Mean Curvature flow, Ricci flow and Yamabe flow.

methods of constructing new ancient solutions from the
gluing of two or more solitons (self-similar solutions).

new techniques and future research directions.
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Ancient and Eternal solutions

Definition: A solution u(·, t) to a parabolic equation is called
ancient if it is defined for all time −∞ < t < T , T < +∞.

Ancient solutions typically arise as blow up limits at a type I
singularity.

Definition: A solution u(·, t) to a parabolic equation is called
eternal if it is defined for all −∞ < t < +∞.

Eternal solutions as blow up limits at a type II singularity.
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Solitons

Solitons (self-similar solutions) are typical examples of ancient
or eternal solutions and often models of singularities.

Some typical examples of solitons to geometric PDE are:

Spheres:

Cylinders:

Translating solitons:
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Solitons as singularities

A well known technique introduced by R. Hamilton (1995)
has been widely used to characterize as solitons the eternal
solutions to geometric flows which attain a space-time
curvature maximum.

Such solutions typically appear as carefully chosen blow up
limits near type II singularities.

Its proof relies on a clever combination of the strong maximum
principle and Li-Yau type differentiable Harnack estimates.
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Other Ancient and eternal solutions

However, there exist other ancient or eternal solutions which
are not solitons.

These, often may be visualized as obtained from the gluing as
t → −∞ of two or more solitons.

Obtaining more information about such solutions, often leads
to the better understanding of the singularities.

Objective: How to construct such solutions and how to
characterize them among all ancient or eternal solutions.
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Geometric conditions of ancient or eternal solutions

Goal: Characterize all ancient or eternal solutions to a geometric
flow under natural geometric conditions:

Being a soliton (self-similar solution)

Satisfying an appropriate curvature bound as t → −∞:

i. Type I: global curvature bound after typical scaling.

ii. Type II: solutions which are not type I.

Satisfying a non-collapsing condition.
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Liouville’s theorem for the heat equation on manifolds

Let Mn be a complete non-compact Riemannian manifold of
dimension n ≥ 2 with Ricci (Mn) ≥ 0.

Yau (1975): Any positive harmonic function u on Mn must
be constant.

This is the analogue of Liouville’s Theorem for harmonic
functions on Rn.

Question: Does the analogue of Yau’s theorem hold for
positive solutions of the heat equation

ut = ∆u on Mn?

Answer: No. Example u(x , t) = ex1+t , x = (x1, · · · , xn) on
Mn := Rn.
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A Liouville type theorem for the heat equation

Souplet - Zhang (2006): Let Mn be a complete non-compact
Riemannian manifold of dimension n ≥ 2 with Ricci (Mn) ≥ 0.

(a) If u be a positive ancient solution to the heat equation on
Mn × (−∞,T ) such that

u(p, t) = eo(d(p)+
√
|t|) as d(p)→∞

then u is a constant.

(b) If u be an ancient solution to the heat equation on
Mn × (−∞,T ) such that

u(p, t) = o(d(p) +
√
|t|) as d(p)→∞

then u is a constant.

Proof: By using a local gradient estimate of Li-Yau type on
large appropriately scaled parabolic cylinders.
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Semilinear equations on Rn

Consider positive solutions u > 0 of the similinear elliptic
equation

∆u + f (u) = 0, on Rn.

Well known example related to the Yamabe problem is

f (u) = u
n+2
n−2 .

Gidas, Ni and Nirenberg (1979): Solutions u > 0 with mild
decay condition as |x | → +∞ are rotationally symmetric.

Many related important subsequent results including those by
Cafarelli, Gigas and Spruck and Berestycki and Nirenberg.
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The Semi-linear heat equation

Consider next the semilinear heat equation

(?SL) ut = ∆u + up on Rn × (0,T )

in the subcritical range of exponents 1 < p < n+2
n−2 .

It provides a prototype for the blow up analysis of geometric
flows.

In particular in neckpinches of solutions to the Ricci flow and
Mean Curvature flow.

Also in the characterization of rescaled limits as t → −∞ of
ancient solutions.
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The rescaled semi-linear heat equation

Self-similar scaling at a singularity at (a,T ):

w(y , τ) = (T−t)
1

p−1 u(x , t), y =
x − a√
T − t

, τ = − log(T − t).

Giga - Kohn (1985): ‖w(τ)‖L∞(Rn) ≤ C , τ > − logT .

The rescaled solution satisfies the equation

(?) wτ = ∆w − 1

2
y · ∇w − w

p − 1
+ wp.

Objective: To analyze the blow up behavior of u one needs to
understand the long time behavior of w as τ → +∞.

This is closely related to the classification of bounded eternal
solutions of (?).
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Eternal solutions of the semi-linear heat equation

Problem: Provide the classification of bounded positive
eternal solutions w of equation

(?) wτ = ∆w − 1

2
y · ∇w − w

p − 1
+ wp.

Eternal means that w(·, τ) is defined for τ ∈ (−∞,+∞).

The only steady states of (?) are the constants:

w = 0 or w = κ, with κ := (p − 1)
− 1

(p−1) .

Theorem (Giga - Kohn ’87) limτ→±∞ w(·, τ) = steady state.

Space independent eternal solutions : φ(τ) = κ(1 + eτ )
− 1

(p−1) .
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Classification of Eternal solutions

Theorem (Giga - Kohn ’87 and Merle - Zaag ’98)
If w is bounded positive eternal solution of (?) defined on
Rn × (−∞,+∞), then

w = 0 or w = κ or w = φ(τ − τ0).

Main difficulty (Merle - Zaag): Classify the orbits w(·, τ) that
connect the two steady states:

lim
τ→−∞

w(·, τ) = κ and lim
τ→+∞

w(·, τ) = 0

Important Liouville type results related to equation (?
SL

) by:

P. Polacik, P. Quittner, T. Bartsch, P. Souplet, E. Yanagida
among others.
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Liouville type results for solutions to parabolic equations

Although Liouville type results often appear with respect to
elliptic equations, there are not many such results available in
the parabolic setting.

G. Koch, N. Nadirashvili, G. Seregin and V. Sverak (2009):
(i) Liouville type result for ancient bounded solutions u(x , t)
of the 2-dim Navier Stokes equations.

(ii) Also, similar result for bounded, axi-symmetric with no
swirl solutions u(x , t) of the 3-dim Navier Stokes equations.
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Ancient Convex solutions to the CSF

Let Γt be a family of closed curves which is an embedded
solution to the Curve shortening flow, i.e. the embedding
F : Γt → R2 satisfies

∂F

∂t
= −κ ν

with κ the curvature of the curve and ν the outer normal.

Gage (1984); Gage and Hamilton (1996); Grayson (1987): the
CSF shrinks Γt to a round point.

Problem: Classify the ancient compact embedded solutions
to the Curve shortening flow.
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Ancient Convex solutions to the CSF

The curvature κ of Γt evolves, in terms of its arc-length s, by

κt = κss + κ3.

Definition: Γt is type I if lim sup
t→−∞

√
|t| max

Γt

κ(·, t) <∞.

Otherwise, Γt is of type II.

Type I solution: the contracting circles.

Type II solution: the Angenent ovals (paper clips). These are
ancient convex solutions in closed form which are not solitons.
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The Classification of Ancient Convex solutions to the CSF

The Angenent ovals (paper clips) as t → −∞ may be
visualized as two grim reaper solutions glued together.

Theorem (D., Hamilton, Sesum - 2010)
The only ancient convex solutions to the CSF are the
contracting spheres or the Angenent ovals.

Proof: It is based on various monotonicity formulas and the
the fact that at its singular time any solution becomes circular
with very sharp rates of convergence.
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Non-Convex ancient solutions

Question: Do they exist non convex compact embedded
solutions to the curve shortening flow ?

Angenent (2011): Presents a YouTube video of an ancient
solution to the CSF built out from one Yin-Yang spiral and
one Grim Reaper.

S. Angenent: is currently working on a rigorous construction
of these solutions.
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The Mean curvature flow

Let Mt , t ∈ (−∞,T ) be a smooth ancient compact solution
of the Mean curvature flow

(MCF)
∂F

∂t
= −H ν

H(p, t) is the Mean curvature and ν a choice of unit normal.

Problem: Understand ancient compact solutions Mt of the
Mean curvature flow.

Panagiota Daskalopoulos Ancient Solutions to Geometric Flows



Ancient non-collapsed solutions to MCF

Weimin Sheng and Xu-Jia Wang; Ben Andrews: Introduced
an α-noncollapsed condition.

B=B α
H(p)

Haslhofer & Kleiner (2013):
Ancient compact + α-noncollapsed MCF solution ⇒ convex.

convex compact + self-similar MCF solution ⇒ sphere.

Ancient ovals: Any compact and α-noncollapsed solution to
MCF which is not self-similar.

Other ancient solutions to MCF: compact and collapsed.
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Ancient MCF ovals

Problem: Provide the classification of all Ancient ovals.

B. White (2003): Existence of certain Ancient ovals with
O(k)× O(l) symmetry. We call them White ancient ovals.

Haslhofer & Hershkovits (2013): Give more details in the
existence proof of the White Ancient ovals.

Angenent (2012): establihes the formal matched asymptotics
of all Ancient ovals as t → −∞.

They are small perturbations of ellipsoids.
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Unique asymptotics of Ancient MCF ovals

S. Angenent, D., and N. Sesum (2015): All ancient ovals with
O(1)× O(n) symmetry have unique asymptotics as t → −∞,
and satisfy Angenent’s precise matched asymptotics:

Geometric properties t → −∞: type II ancient solutions

diam(t) ≈
√

8|t| log |t| and Hmax(t) ≈
√

log |t|√
2|t|

.

The proof involves: the analysis of the linearized operator at
the cylinder, Huisken’s monotonicity formula and carefully
constructed barriers at the intermediate region.
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Uniqueness of Ancient MCF ovals

Work in progress: to establish such asymptotics in the
non-symmetric case.

Next Step: Establish the uniqueness of the Ancient ovals.

Conjecture 1: The Ancient ovals with O(l)× O(k) symmetry
are uniquely determined by their asymptotics at t → −∞.

Hence: they are unique (up to dilation and translation in
rescaled time).

Conjecture 2: All Ancient ovals are O(l)× O(k) symmetric.
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Ancient compact solutions to the 2-dim Ricci flow

Consider an ancient solution of the Ricci flow

(RF)
∂gij
∂t

= −2Rij

on a compact manifold M2 which exists for all time
−∞ < t < T and becomes singular at time T .

In dim 2, we have Rij = 1
2R gij , where R is the scalar

curvature.

Hamilton (1988), Chow (1991): After re-normalization, the
metric becomes spherical at t = T .

Problem: Provide the classification of all ancient compact
solutions.
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Ancient compact solutions to the 2-dim Ricci flow

Choose a parametrization g
S2 = dψ2 + cos2 ψ dθ2 of the

limiting spherical metric.

We parametrize our solution as g(·, t) = u(·, t) g
S2 .

Then the (RF) becomes equivalent to the fast-diffusion
equation:

ut = ∆S2 log u − 2, on S2 × (−∞,T ).

Provide the classification of all ancient solutions.
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Examples of compact solutions on S2

Type I solution: the contracting spheres.

Type II solution: the King-Rosenau solution of the form:

u(ψ, t) = [a(t) + b(t) sin2 ψ ]−1, t < T .

As t → −∞ the King-Rosenau solution looks like two cigar
solitons glued together.
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The classification result

Theorem: (D., Hamilton, Sesum - 2012)

The only ancient solutions to the Ricci flow on S2 are the
contracting spheres and the King-Rosenau solutions.

Proof: combines geometric arguments and PDE techniques.

i. a monotonicity formula and uniform a priori C 1,α estimates
that allow us to pass to the limit as t → −∞.

ii. geometric arguments that allow us to classify the backward
limit as t → −∞.

iii. maximum principle arguments that allow us to characterize the
King-Rosenau solutions among type II solutions.

iv. an isoperimetric inequality that allows us to characterize the
contracting spheres among type I solutions.

Panagiota Daskalopoulos Ancient Solutions to Geometric Flows



The characterization of King solutions

To capture the King solutions we consider the scaling
invariant nonotone quantity

Q(x , y , t) := v̄
[(
v̄xxx − 3v̄xyy

)2
+
(
v̄yyy − 3v̄xxy

)2]
where v̄ := ū−1 is the pressure in plane coordinates.

Using complex variable notation z = x + iy , this quantity is
nothing but

Q = v̄ |v̄zzz |2.
The quantity Q is well defined.

It turns out that Q ≡ 0 implies that v̄ is one of the King
solutions.

To establish that Q ≡ 0 we prove that:

i. Qmax(t) is decreasing in t (by considering its evolution
equation), and

ii. limt→−∞Qmax(t) = 0.
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The 3 dimensional Ricci flow - Open problems

3-dim Ricci flow: The analogue of the 2-dim King-Rosenau
solutions have been shown to exist by G. Perelman. They are
not given in closed form, they are type II and k-noncollapsed.

Other collapsed compact solutions in closed form have been
found by V.A. Fateev in a paper dated back to 1996.

Conjecture: The only k-noncollapsed ancient and compact
solutions to the 3-dim Ricci flow are the contracting spheres
and the Perelman solutions.

Brendle, Huisken & Sinestrari (2011): Present a pinching
curvature condition that characterizes the ancient compact
solutions to the 3-dim Ricci as contracting spheres.
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Ancient solutions to the Yamabe flow

We will conclude by discussing ancient solutions g = gij of the
Yamabe flow on Sn, n ≥ 3.

The Yamabe flow may be viewed as the higher dimensional
analogue of the 2-dim Ricci flow.

It is the evolution of metric g(·, t) conformally equivalent to
the standard metric on Sn by

∂g

∂t
= −R g on −∞ < t < T

where R denotes the scalar curvature of g .

Question: Is it possible to provide the classification of all such
ancient solutions ?
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The Yamabe flow - Background

Let (Mn, g0), n ≥ 3 be a compact manifold without boundary.

The scalar curvature R of a metric g = v
4

n−2 g0 conformal to
g0 is given by

R = −v−
n+2
n−2
(
cn∆g0v − R0 v

)
where R0 denotes the scalar curvature of g0.

R. Hamilton (1989): introduced the Yamabe flow as a
parabolic approach to resolve the Yamabe problem.

S. Brendle (2007): convergence of the normalized flow to a
metric of constant scalar curvature (up to a mild technical
assumption for dim n ≥ 6).

Previous important works: Hamilton ’89, Chow ’92, Ye ’94,
Schwetlick-Struwe ’2003.
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Ancient solutions to the Yamabe flow on Sn

Let g = v
4

n−2 g
Sn

be an ancient solution to the Yamabe flow,
which is conformal to the standard metric on Sn.

The function v evolves by the fast diffusion equation

(v
n+2
n−2 )t = ∆Snv − cn v on Sn × (−∞,T ).

Let g = v̄
4

n−2 gRn after stereographic projection. Then,

(v̄
n+2
n−2 )t = ∆v̄ on Rn × (−∞,T ).

Definition: An ancient solution is called of type I if:

lim sup
t→−∞

(|t| max
Sn
|Rm|(·, t)) <∞.

Otherwise, it is called of type II.
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The King Solutions

J.King (1993): discovered non-self similar type I ancient
compact solutions to the (YF) on Sn in closed form.

King solutions: g = v̂
K

(·, t)
4

n−2 gRn , where

v̂
K

(x , t) =
(
a(t) + 2b(t) |x |2 + a(t)|x |4

)− n−2
4 , x ∈ Rn.

As t → −∞ they converge (after rescaling) to two Barenblatt
type self-similar solutions (shrinking solitons) joined by a long
cylindrical neck.

t≈−∞
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Ancient solutions to the Yamabe flow on Sn

Question 1:
Are the contracting spheres and the King solutions the only
examples of type I ancient solutions ?

Question 2:
Are there any type II ancient solutions ?
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New Type I solutions to the Yamabe flow

Recent work: (D., del Pino, J. King and N. Sesum - 2015)
There exist infinite many other type I ancient solutions.

As t → −∞ they look as two self-similar solutions vλ, vµ
connected by a cylinder and moving with speeds λ > 0, µ > 0.

Our solutions are not given in closed form but we show very
sharp asymptotics.

In similar spirit to the work by Hamel and Nadirashvili (1999)
where they construct ancient solutions for the KPP equation

ut = uxx + f (u), x ∈ R.
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Shrinking solitons with cylindrical behavior

We look for rotationally symmetric shrinking solitons of the

(YF) expressed in cylindrical coordinates g = v
4

n−2 g
cyl

.

v(x , τ) satisfies (after a type I rescaling) the equation:

(∗) (v
n+2
n−2 )τ = vxx − v + v

n+2
n−2 .

Shrinking solitons (or traveling waves): ∀λ ≥ 1 there exist a
solution vλ = Vλ(x − λτ) of (∗) with cylindrical behavior

Vλ(x) ≈ 1− Cλe
−γλx , as x → +∞.

Theorem: (D., J. King and N. Sesum)
L1 stability of the traveling wave solutions vλ.
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Shrinking solitons with cylindrical behavior

Consider shrinking solitons in cylindrical coordinates and after
a type I scaling.

Traveling wave to the right: vλ,h = Vλ(x − λ τ + h)

Traveling wave to the left: v̄µ,h′ = Vµ(−x − µ τ + h′)

Clylinder: ξk(τ) ≈ 1− k eτ/2, as τ → −∞.
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New type I ancient solutions

Theorem: ( D., del Pino, J. King and N. Sesum)

There exist a five parameter family vλ,µ,h,h′,k of type I
ancient solutions of the Yamabe flow on Sn × (−∞,T ).

In terms of the pressure function f := vq, q := − 4
n−2 it

satisfies:

vqλ,µ,h,h′,k ≈ vqλ,h(x , τ) + ξk(τ)q + v̄qµ,h′(x , τ).

Proof: By the construction of precise ancient barriers.
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Ancient towers of moving bubbles - type II solutions

Question: Are there any type II ancient solutions to (YF) ?

D., del Pino and Sesum (2013):
We construct a class of ancient solutions of the Yamabe flow
on Sn which (after re-normalization) converge as t → −∞ to
a tower of n-spheres. They are rotationally symmetric.

t→−∞ t>−∞

The curvature operator in these solutions changes sign and
they are of type II.

Our construction also holds for any number of bubbles.

t→−∞
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Discussion on parabolic gluing methods

Our construction may be viewed as a parabolic analogue of
the elliptic gluing technique.

Elliptic gluing: pioneering works by Kapouleas ’90 -’95 and by
Mazzeo, Pacard, Pollack, Ulhenbeck among many others.

Brendle & Kapouleas (2014): construct new ancient compact
solutions to the 4-dim Ricci flow by parabolic gluing.

Future research direction: apply parabolic gluing on other
geometric flows.
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Conclusion

We discussed ancient solutions to geometric parabolic PDE.

Typical examples are either solitons or other special solutions
obtained from the gluing as t → −∞ of solitons.

The only existing classification results heavily rely on knowing
the exact form of these ancient solutions.

Future research direction: develop new techniques that allow
us to characterize and construct other types of ancient or
eternal solutions.
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