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Ricci Tensor

Given a Riemannian manifold (M", g), the Ricci tensor
n
Ric(X,Y) = (R(X,e&)e;, Y)
i=1
— the trace of curvature tensor. Symmetric 2-tensor.
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Ricci Curvature

Italian mathematician: Gregorio Ricci-Curbastro (1853-1925)
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e Ricci curvature for | X| =1 is
Ricci Curvature RIC X X E K X e,)

— the “average” of sectional curvature
For S", K=1, Ric=n-—1.

Ricci curvature is in between sectional curvature and scalar
curvature, measures the deviation of the volume element from
the Euclidean one.



Comparison
Results for
Ricci
Curvature |

m Vacuum Einstein equation

Ricci Curvature Ric = )\g7

A constant



Comparison

Results for
Ricci
Curvature |
m Vacuum Einstein equation
Ricci Curvature Ric = A\g, A constant

m Ricci flow 9
a—é’t’ — _2Ric.



Comparison
Results for
Ricci
Curvature |

m Vacuum Einstein equation
Ricci Curvature Ric = )\g7 A constant
m Ricci flow
og

m Related to Optimal Transportation



Model Spaces

Comparison
Results for
Ricci
Curvature |

M}, — the n-dim simply connected Riemannian manifolds with
sectional curvature = H.

Comparison
Geometry



Model Spaces

Comparison

Results for
Ricci
Curvature |
o M}, — the n-dim simply connected Riemannian manifolds with
Seomety sectional curvature = H.

After scaling, take H = —1,0, 1.
Model spaces are H", R", S".
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For M" with curvature > H, compare M" with M/,.

Comparison
Geometry

General principle: Bigger curvature ~» Smaller size

Very successful with sectional curvature: Rauch (1951) and
Toponogov (1959) comparison theorem
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Given u € C*°(M), the Hessian of u is a symmetric 2-tensor:
Hessu(X,Y) = (VxVu,Y).

Comparison
Geometry

If Ky > H, x € M, r(y) = d(x,y), the distance function from
X, then the second variation formula and index lemma gives

Hess r(e, e) < Hessy 7(€, €)

for e € T,M with |e| =1 and e L Vr(y). (same for model)
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Given u € C*°(M), the Hessian of u is a symmetric 2-tensor:
Hessu(X,Y) = (VxVu,Y).

Comparison
Geometry

If Ky > H, x € M, r(y) = d(x,y), the distance function from
X, then the second variation formula and index lemma gives

Hess r(e, e) < Hessy 7(€, €)

for e € T,M with |e| =1 and e L Vr(y). (same for model)

Hessian Comparison is an infinitesinal version of Rauch
Comparion.
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Comparison
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F Given M" with Ric > (n—1)H, x € M, r(-) = d(x,-), then
Curvature |
Ar < Ayr.
Lapl 0o .
Comparsion This is a very fundamental comparison result!

It characterizes Ricci curvature lower bound:

Ric>(n—1)H < Ar < Apr

Used in Cheeger-Gromoll's splitting theorem (1971).
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o Red For smooth function u on (M", g),
1
§A|vu|2 = |Hess u|® + (Vu, V(Au)) + Ric(Vu, Vu).
Laplace
Comparsion

One can apply it to harmonic function: Au =0,
distance function: |Vr| =1,
eigenfunction: Au = A\u

If uis harmonic and |Vu| =1, and Ric > 0, then Hess u = 0.
i.e. Vu is parallel.

This is the starting point of Cheeger-Gromoll's splitting
theorem.
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Bochner Inequality

Using the Cauchy-Schwarz inequality |Hess u|? > 7(A:)2,
if Ric > (n— 1)H,

1 Au)?
§A|Vu|2 > % +(Vu, V(Au)) + (n — 1)H|Vul?.

This characterizes Ricci curvature lower bound.
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el Using the Cauchy-Schwarz inequality [Hess u|?> > %,
if Ric > (n—1)H,
1 Au)?
§A|Vu|2 > % +(Vu, V(Au)) + (n — 1)H|Vul?.
tifv‘wapcaision This characterizes Ricci curvature lower bound.

Ricy > (n— 1)H

)

The Bochner inequality holds for all u € C3(M)



Proof of the Laplacian Comparison

Comparison Recall the Bochner formula

Ricci 1
Curvature | EA‘vu‘z = |Hess u|2 + <VU7 V(AU)> + RiC(VU, VU)
Proof of the

Laplacian
Comparison



Proof of the Laplacian Comparison

Comparison Recall the Bochner formula
Ricci 1
Curvature | EA‘vu‘z = |Hess u|2 + <VU7 V(AU)> + RiC(VU, VU)

Let u = r, the distance function, we have
0 = |Hess r|? + (Ar)’ + Ric(dr, Or).

Proof of the
Laplacian
Comparison



Proof of the Laplacian Comparison

Comparison Recall the Bochner formula
Results for
Ricci

Curvature | 7A‘vu‘2 |Hess U|2 <VU7 V(AU)> + RIC(VU,VU)

Let u = r, the distance function, we have
0 = |Hess r|? + (Ar)’ + Ric(dr, Or).
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For the model space, we have
(AHf )?

n—
For M"™ with Ricy > (n — 1)H, we have the Riccati inequality

+ (Apr) + (n—1)H.

OZ%—#—(Ar)’—i—(n—l)H
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1
Ar— Apyr) < ———— ((Ar)? — (Ayr)?).
(Ar = AurY < == (A2 = (Anr)?)
Let sny(r) be the solution to
Proof_ofthe
Laplacian Sn:‘i[ _I_ Han — 0

Comparison

such that sny(0) = 0 and sn,(0) = 1. Then

/
sn
Ayr=(n— 1)ﬁ
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We compute that

(snf(Ar — AHr))/
= 2snlysny(Ar — Ayr) + sniy(Ar — Ayr)
2 1
lsnf_, ((Ar)? = (Apr)?)

< 1snf_,AHr(Ar — Ayr) —
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Proof of the
Laplacian
Comparison

We compute that

(snf_,(Ar — AHr))/
2snlysnpy(Ar — Apr) 4 snzy(Ar — Ayr)

<

2

1snf_,AHr(Ar — Ayr) —

S1n

2
H1 (Ar — Apr)*> <0

L lsnf_, ((Ar)2 — (AHr)2)
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Proof of the
Laplacian
Comparison

We compute that

(snf_,(Ar — AHr))/

<

2snlysnpy(Ar — Ayr) + sn(Ar — Ayr)
2 1
lsnf_, ((Ar)? = (Apr)?)

1snf_,AHr(Ar — Ayr) —

S1n

2
H1 (Ar — Ayr)* <0

Since lim,_,gsn2,(Ar — Ayr) = 0, integrating from 0 to s yields

sn?,(s)(Ar(s) — Anr(s)) <0,

The Laplacian Comparison!
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Immediately gives the Bonnet-Myers (1941) theorem:
If Ricpy > (n— 1)H > 0, then Diamy, < Diam (S},) = \/Lﬁ;

Also gives Dirichlet Eigenvalue, Heat Kernel Comparisons:
If Ricpy > (n— 1)H, then
Applications (Cheng, 1975) )\]_(B(X, R)) S Al(BH(R))

of Laplacian

Comparison (Cheeger-Yau, 1981) H(x,y,t) > Hu(X,y, t).
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Volume
Comparison

Comparison of Volume Elements

Theorem

Suppose M" has Ricpy > (n — 1)H. Wirte the volume element
dvol = A(r,0) drdf,_1 in the geodesic polar coordinate at q
and same for the model space dvoly = Ay(r) drd@,—1. Then
A(r, 0)
Ap(r)

is nonincreasing along any minimal geodesic segment from q.

This follows from the following lemma and the Laplacian
comparison.

Lemma

/
i(r, 0) = Ar.
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Bishop-Gromov Volume Comparison

Given M" with Ric > (n—1)H, x € M. Let Voly(B(r)) be the
volume of r—ball in the model space M}, then

Vol (B(x,r))

Volry(B(r)) is nonincreasing in r.

In particular,

Vol (B(p, R)) < Voly(B(R)) forall R >0,

Vol (B(p, r)) . Voly(B(r))

Vol (B(p, R)) = Voly(B(R)) forall 0<r<R.



Bishop-Gromov Volume Comparison

Comparison

Results for Given M" with Ric > (n—1)H, x € M. Let Voly(B(r)) be the
G volume of r—ball in the model space M7, then

Vol (B(x,r)) . . N

————"~ is nonincreasing in r.

Voly(B(r)) 2

In particular,

Vol (B(p, R)) < Voly(B(R)) forall R >0,

oL Vol (B(p, r)) > Vol (B(r))
Vol (B(p, R)) = Voln(B(R))

forall 0<r<R.

Moreover equality holds if and only if B(p, R) is isometric to
Bu(R).
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m Milnor’s result on the growth of 7; for manifolds with
Ric > 0 (1968)

m Gromov's first Betti number estimate, precompactness
theorem

m Cheng's maximal diameter theorem

m Volume growth of noncompact manifolds with Ric > 0.

Volume
Comparison
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in r(x,y), we fix x.
If we let both vary, one has

Lemma (Andrews and Clutterbuck 2013)
M" with Ricp > (n— 1)H, then

n—1 n—1
ngi,e,‘r(x’y) S Zﬁg,‘,eir(xﬁy)
i=1 i=1

r(x,y)
Two Points o _2(n N 1) TH( 2 )
Second”

B where e; 1. Vr are orthonormal and parallel, Ty = H 224
Comparison (an)
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Comparison In geodesic polar coordinate, we have
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where A is the induced Laplacian on the sphere. Therefore

Theorem (Global Laplacian Comparison)

If Ricpgn > (n— 1)H, in weak (barrier, viscosity or distributions)
sense , we have

Ap(r)
Ap(r)

(AVARVAN
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Laplacian Comparison for Radial Functions

Comparison In geodesic polar coordinate, we have
Results for
Ricci
Curvature | A A (A ) 8 82
=A+ (Ar)=—+ —
or 0r?’

where A is the induced Laplacian on the sphere. Therefore

Theorem (Global Laplacian Comparison)

If Ricpgn > (n— 1)H, in weak (barrier, viscosity or distributions)
sense , we have

Dp(r) < App(r) (if¢' >0),
Dp(r) > App(r) (if¢' <0)

Two Points

Second”

Comparion barrier subsolutions are viscosity subsolutions;

viscosity subsolution iff distribution subsolution
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Let v(x,y) = 2<p(r( ’y)) with ¢’ > 0. If Ricyn > (n — 1)H,
then

Zve,e, (x.9) < 2~ D/ Tu( "))
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Let v(x,y) = 2<p(r( ’y)) with ¢’ > 0. If Ricyn > (n — 1)H,
then

Zve,e, (x.9) < 2~ D/ Tu( "))

This is very useful in estimating the modulus of continuity or
oscillations!

Two Points
Distance
Second
Derivative
Comparison
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Let M" be a (closed) compact manifold with diameter D, and
Ricpp > (n— 1)H. Then the first non-trivial eigenvalue

)\1(M7g) Z 5\(!7, Ha D)a
where X(n, H, D) is the first eigenvalue of the operator

Lup = ¢"(s) = (n—1)¢' Tu(s)

on the interval [-2, 2] with Neumann boundary ¢'(£2) = 0.
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m When H > 0, it gives the Lichnerowicz (1958) first
eigenvalue comparison: Ay > A\i(M}[}) = nH.
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m When H > 0, it gives the Lichnerowicz (1958) first
eigenvalue comparison: Ay > A\i(M}[}) = nH.

m When H =0, it gives Zhong-Yang (1984) estimate:
A1 > B

m General Case: Mufa Chen and Fengyu Wang (1994)
(probabilistic ‘coupling method’);
P. Kréger (1998) (using gradient estimate);
Andrews and Clutterbuck (2013) (modulus of continuity
for heat equation);
Zhang-Wang (2015) (elliptic proof)

First Neumann
i e
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First Neumann
Eigenvalue
Comparison

Proof of the Eigenvalue Comparison

Let o, @ be the first eigenfuntion of the Laplace of M" and
Ly p respectively.
N () - £
y) —p(x
Qey) = =27

% <r(>;,y))

be the quotient of the oscillations.
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Let o, @ be the first eigenfuntion of the Laplace of M" and
Ly p respectively.
Let

" w(y) = ¢(x)
QRx,y) = @(

be the quotient of the oscillations.
Assume the maximum of @ is attained at (xo, yo) and xp # yo.
Denote sy = —r(XOQ’yO).

At the maximum point (xo, yo), we have

1
@(s0)
0

Ve @ (V2,6 (2(v0) = ¢(x0)) = Qx0, 0) V2, o, 7(%0))

IA

First Neumann
i lue



Since @(sp) > 0, Q(xo0,y0) >0, sumoveri=1,--- ,n—1 and

using the comparison for V2 _ 3(so), we have

n—1

> V2 . (0(y0) — 9(x0)) < Q(x0,¥0) [—(n — 1)@ (50) Tri(s0)]

i=1
Add the radial direction gives

Ap(y0) — Ap(x0) < Q(x0, y0) [¢"(50) — (n — 1)@ (s0) Thi(s0)]
i.e.

M (M, g)(#(¥0) — ¢(x0))
/\1(M7g)

< Q(XOJ/O);‘(n: li D)QB(SO)'
< Xn,H,D)
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When the maximum of Q is attained at (xg, o) and xo = yo, a
limiting process reduce to above. Note that as y — x,

2(V(x),7'(0))
?'(0)

Q(x,7(0)) =

First Neumann
Eigenvalue
Comparison
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Next Lecture

Lecture 1l

Generalizations to Bakry-Emery and Integral Ricci Curvaure

Thank you



