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Ricci Tensor

Given a Riemannian manifold (Mn, g), the Ricci tensor

Ric(X ,Y ) =
nX

i=1

hR(X , ei )ei ,Y i

— the trace of curvature tensor. Symmetric 2-tensor.

Italian mathematician: Gregorio Ricci-Curbastro (1853-1925)
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Ricci Curvature

Ricci curvature for |X | = 1 is

Ric(X ,X ) =
nX

i=1

K (X , ei )

— the “average” of sectional curvature

For Sn, K ⌘ 1, Ric ⌘ n � 1.

Ricci curvature is in between sectional curvature and scalar
curvature, measures the deviation of the volume element from
the Euclidean one.
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Vacuum Einstein equation

Ric = �g , � constant

Ricci flow
@g

@t
= �2Ric.

Related to Optimal Transportation
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Model Spaces

Mn
H — the n-dim simply connected Riemannian manifolds with

sectional curvature ⌘ H.

After scaling, take H = �1, 0, 1.
Model spaces are Hn,Rn, Sn.
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Comparison Geometry

For Mn with curvature � H, compare Mn with Mn
H .

General principle: Bigger curvature  Smaller size

Very successful with sectional curvature: Rauch (1951) and
Toponogov (1959) comparison theorem
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Hessian Comparison for Sectional Curvature

Given u 2 C1(M), the Hessian of u is a symmetric 2-tensor:

Hess u(X ,Y ) = hrXru,Y i.

If KM � H, x 2 M, r(y) = d(x , y), the distance function from
x , then the second variation formula and index lemma gives

Hess r(e, e)  HessH r̄(ē, ē)

for e 2 TyM with |e| = 1 and e ? rr(y). (same for model)

Hessian Comparison is an infinitesinal version of Rauch
Comparion.
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Laplacian Comparison

Given Mn with Ric � (n � 1)H, x 2 M, r(·) = d(x , ·), then

�r  �H r .

This is a very fundamental comparison result!

It characterizes Ricci curvature lower bound:

Ric � (n � 1)H () �r  �H r

Used in Cheeger-Gromoll’s splitting theorem (1971).
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A main tool for Ricci curvature — Bochner formula

For smooth function u on (Mn, g),

1

2
�|ru|2 = |Hess u|2 + hru,r(�u)i+ Ric(ru,ru).

One can apply it to harmonic function: �u = 0,
distance function: |rr | = 1,
eigenfunction: �u = �u

If u is harmonic and |ru| = 1, and Ric � 0, then Hess u = 0.
i.e. ru is parallel.
This is the starting point of Cheeger-Gromoll’s splitting
theorem.
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Bochner Inequality

Using the Cauchy-Schwarz inequality |Hess u|2 � (�u)2

n ,
if Ric � (n � 1)H,

1

2
�|ru|2 � (�u)2

n
+ hru,r(�u)i+ (n � 1)H|ru|2.

This characterizes Ricci curvature lower bound.

RicM � (n � 1)H

m

The Bochner inequality holds for all u 2 C 3(M)
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Proof of the Laplacian Comparison

Recall the Bochner formula

1

2
�|ru|2 = |Hess u|2 + hru,r(�u)i+ Ric(ru,ru).

Let u = r , the distance function, we have

0 = |Hess r |2 + (�r)0 + Ric(@r , @r).

For the model space, we have

0 =
(�H r)2

n � 1
+ (�H r)

0 + (n � 1)H.

For Mn with RicM � (n � 1)H, we have the Riccati inequality

0 � (�r)2

n � 1
+ (�r)0 + (n � 1)H.
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We have

(�r ��H r)
0  � 1

n � 1

�
(�r)2 � (�H r)

2

�
.

Let snH(r) be the solution to

sn00H + H snH = 0

such that snH(0) = 0 and sn0H(0) = 1. Then

�H r = (n � 1)
sn0H
snH

.



Comparison

Results for

Ricci

Curvature I

Guofang Wei

Introduction

Ricci Curvature

Comparison

Geometry

Laplace

Comparsion

Proof of the

Laplacian

Comparison

Applications

of Laplacian

Comparison

Volume

Comparison

Two Points

Distance

Second

Derivative

Comparison

First Neumann

Eigenvalue

Comparison

We have

(�r ��H r)
0  � 1

n � 1

�
(�r)2 � (�H r)

2

�
.

Let snH(r) be the solution to

sn00H + H snH = 0

such that snH(0) = 0 and sn0H(0) = 1. Then

�H r = (n � 1)
sn0H
snH

.



Comparison

Results for

Ricci

Curvature I

Guofang Wei

Introduction

Ricci Curvature

Comparison

Geometry

Laplace

Comparsion

Proof of the

Laplacian

Comparison

Applications

of Laplacian

Comparison

Volume

Comparison

Two Points

Distance

Second

Derivative

Comparison

First Neumann

Eigenvalue

Comparison

We compute that

�
sn2H(�r ��H r)

�0

= 2sn0HsnH(�r ��H r) + sn2H(�r ��H r)
0

 2

n � 1
sn2H�H r(�r ��H r)�

1

n � 1
sn2H

�
(�r)2 � (�H r)

2

�

= �
sn2H
n � 1

(�r ��H r)
20

Since limr!0

sn2H(�r ��H r) = 0, integrating from 0 to s yields

sn2H(s)(�r(s)��H r(s))  0,

The Laplacian Comparison!
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Some Applications

Immediately gives the Bonnet-Myers (1941) theorem:
If RicM � (n � 1)H > 0, then DiamM  Diam (SnH) = ⇡p

H
;

Also gives Dirichlet Eigenvalue, Heat Kernel Comparisons:
If RicM � (n � 1)H, then
(Cheng, 1975) �

1

(B(x ,R))  �
1

(BH(R)).
(Cheeger-Yau, 1981) H(x , y , t) � HH(x , y , t).
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Comparison of Volume Elements

Theorem

Suppose Mn has RicM � (n � 1)H. Wirte the volume element
dvol = A(r , ✓) drd✓n�1

in the geodesic polar coordinate at q
and same for the model space dvolH = AH(r) drd✓n�1

. Then

A(r , ✓)

AH(r)

is nonincreasing along any minimal geodesic segment from q.

This follows from the following lemma and the Laplacian
comparison.

Lemma

A0

A (r , ✓) = �r .
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Bishop-Gromov Volume Comparison

Given Mn with Ric � (n � 1)H, x 2 M. Let VolH(B(r)) be the
volume of r–ball in the model space Mn

H , then

Vol (B(x , r))

VolH(B(r))
is nonincreasing in r .

In particular,

Vol (B(p,R))  VolH(B(R)) for all R > 0,

Vol (B(p, r))

Vol (B(p,R))
� VolH(B(r))

VolH(B(R))
for all 0 < r  R .

Moreover equality holds if and only if B(p,R) is isometric to
BH(R).
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Some Applications

Milnor’s result on the growth of ⇡
1

for manifolds with
Ric � 0 (1968)

Gromov’s first Betti number estimate, precompactness
theorem

Cheng’s maximal diameter theorem

Volume growth of noncompact manifolds with Ric � 0.
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Two Points Distance Second Derivative
Comparison

The Laplacian comparison is for one point distance function —
in r(x , y), we fix x .
If we let both vary, one has

Lemma (Andrews and Clutterbuck 2013)

Mn with RicM � (n � 1)H, then

n�1X

i=1

r2

ei ,ei r(x , y) 
n�1X

i=1

r̄2

ei ,ei r(x , y)

= �2(n � 1)TH(
r(x , y)

2
)

where ei ? rr are orthonormal and parallel, TH = H snH
(snH)0

.
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Laplacian Comparison for Radial Functions

In geodesic polar coordinate, we have

� = �̃+ (�r)
@

@r
+

@2

@r2
,

where �̃ is the induced Laplacian on the sphere. Therefore

Theorem (Global Laplacian Comparison)

If RicMn � (n� 1)H, in weak (barrier, viscosity or distributions)
sense , we have

�'(r)  �H'(r) (if '0 � 0),

�'(r) � �H'(r) (if '0  0).

barrier subsolutions are viscosity subsolutions;
viscosity subsolution i↵ distribution subsolution
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Two Points Radial Functions Second Derivative
Comparison

Let v(x , y) = 2'( r(x ,y)
2

), with '0 � 0. If RicMn � (n � 1)H,
then

n�1X

i=1

r2

ei ,ei v(x , y)  �2(n � 1)'0TH(
r(x , y)

2
)

This is very useful in estimating the modulus of continuity or
oscillations!
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Application – First Neumann Eigenvalue
Comparison

Theorem

Let Mn be a (closed) compact manifold with diameter D, and
RicM � (n � 1)H. Then the first non-trivial eigenvalue

�
1

(M, g) � �̄(n,H,D),

where �̄(n,H,D) is the first eigenvalue of the operator

LH,D = '00(s)� (n � 1)'0TH(s)

on the interval [�D
2

, D
2

] with Neumann boundary '0(±D
2

) = 0.
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Remark

When H > 0, it gives the Lichnerowicz (1958) first
eigenvalue comparison: �

1

� �
1

(Mn
H) = nH.

When H = 0, it gives Zhong-Yang (1984) estimate:
�
1

� ⇡
D2

.

General Case: Mufa Chen and Fengyu Wang (1994)
(probabilistic ‘coupling method’);
P. Kröger (1998) (using gradient estimate);
Andrews and Clutterbuck (2013) (modulus of continuity
for heat equation);
Zhang-Wang (2015) (elliptic proof)
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Proof of the Eigenvalue Comparison

Let ', '̄ be the first eigenfuntion of the Laplace of Mn and
LH,D respectively.
Let

Q(x , y) =
'(y)� '(x)

'̄
⇣
r(x ,y)

2

⌘

be the quotient of the oscillations.

Assume the maximum of Q is attained at (x
0

, y
0

) and x
0

6= y
0

.

Denote s
0

= r(x
0

,y
0

)

2

.
At the maximum point (x

0

, y
0

), we have

r2

ei ,eiQ =
1

'̄(s
0

)

�
r2

ei ,ei ('(y0)� '(x
0

))� Q(x
0

, y
0

)r2

ei ,ei '̄(s0)
�

 0
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Since '̄(s
0

) > 0, Q(x
0

, y
0

) > 0, sum over i = 1, · · · , n � 1 and
using the comparison for r2

ei ,ei '̄(s0), we have

n�1X

i=1

r2

ei ,ei ('(y0)� '(x
0

))  Q(x
0

, y
0

)
⇥
�(n � 1)'̄0(s

0

)TH(s0)
⇤

Add the radial direction gives

�'(y
0

)��'(x
0

)  Q(x
0

, y
0

)
⇥
'̄00(s

0

)� (n � 1)'̄0(s
0

)TH(s0)
⇤

i.e.

�
1

(M, g)('(y
0

)� '(x
0

))  Q(x
0

, y
0

)�̄(n,H,D)'̄(s
0

).

�
1

(M, g)  �̄(n,H,D)
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When the maximum of Q is attained at (x
0

, y
0

) and x
0

= y
0

, a
limiting process reduce to above. Note that as y ! x ,

Q(x , �0(0)) =
2hr'(x), �0(0)i

'̄0(0)

.
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Next Lecture

Lecture II

Generalizations to Bakry-Emery and Integral Ricci Curvaure

Thank you
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Next Lecture

Lecture II

Generalizations to Bakry-Emery and Integral Ricci Curvaure
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