Metric measure spaces with Ricci lower bounds, Lecture 2

Andrea Mondino (Zurich University)

MSRI-Berkeley 22*th* January 2016 One of oldest problems in mathematics, roots in myths of 2000 years ago (Queen Dido's problem). Roughly 3 questions:

- Q1 Given a space *X* what is the minimal amount of area needed to enclose a fixed volume *v >* 0?
- Q2 Is there an optimal shape?
- Q3 Describe/characterize the optimal shapes.

Examples

Not many examples of spaces *X* where we can fully answer Q1,Q2,Q3:

- \triangleright $X = \mathbb{R}^n \rightsquigarrow$ only optimal shapes are round balls: $|\partial E| > |\partial B|$ where *B* is a round ball s.t. $|B| = |E|$.
- \triangleright $X = S^n$ or $X = H^n$ analogous: only optimal shapes are metric balls: $|\partial E|$ > $|\partial B|$ where *B* is a metric ball s.t. $|B| = |E|$
- \triangleright Not many other examples (e.g. $\mathbb{R}P^3$ by Ritoré-Ros): in general the spaces for which we can fully answer Q1,Q2,Q3 are either very symmetric or perturbations of very symmetric spaces.
- \triangleright Results in presence of mild singularities but still very symmetric (conical manifolds: Morgan-Ritoré '02, Milman-Rotem '14. Polytopes: Morgan '07).

Besides the euclidean one, probably the most famous isoperimetric inequality is the Levy-Gromov isoperimetric inequality:

Levy-Gromov Isoperimetric inequality

Let (M^n, g) Riemannian manifold with $Ric_g \geq Kg, K > 0$, and $E \subset M$ domain with smooth boundary ∂E . Then

$$
\frac{|\partial E|}{|M|} \geq \frac{|\partial B|}{|S|} \quad (LGI)
$$

where $S = S_K^n$ round sphere with $Ric \equiv K$, and $B \subset S$ is a spherical cap s.t. $\frac{|E|}{|M|} = \frac{|B|}{|S|}$.

Isoperimetry in m.m.s.

DEF: Let (X, d, m) be a m.m.s. with $m(X) = 1$ and let $E \subset X$ be a Borel set. Define the outer Minkowski content

$$
\mathfrak{m}^+(E):=\liminf_{\varepsilon\to 0^+}\frac{\mathfrak{m}(E^\varepsilon)-\mathfrak{m}(E)}{\varepsilon}
$$

where $E^{\varepsilon} := \{x \in X : d(x, E) < \varepsilon\}$

DEF: The isoperimetric profile function $\mathcal{I}_{(X,d,m)} : [0,1] \to \mathbb{R}^+$ is the largest function such that $m^+(E) \geq I_{(X,d,m)}(m(E)) \,\forall E \subset X$, i.e.

 $\mathcal{I}_{(X \text{ d}, \text{m})}(v) := \inf \{ \text{m}^+(E) \text{ s.t. } \text{m}(E) = v \}.$

RK: - Q1 amounts to compute/estimate $\mathcal{I}_{(X,d,m)}$. - (LGI) states $\mathcal{I}_{(M^n,d_g,vol/(vol(M)))}\geq \mathcal{I}_{(S_K^n,d_{\mathcal{S}_{S_K}^n},vol_{S_K^n}/(vol_{S_K^n}(S_K^n)))}$ Q: - is there an analog of (LGI) for $Ric > K$, $K < 0$? -what about the (LGI) in *RCD*(*K, N*) spaces?

Extension of (LGI) by E. Milman to arbitrary weighted manifolds and to $K \in \mathbb{R}$

DEF: Let (M^n, g) be a Riemannian manifold and let $m := \Psi vol_{g}$ for some smooth function $\Psi \geq 0$. We say that (M^n, g, m) satisfies the $CDD(K, N, D)$ condition if

 \triangleright supp(m) \subset Ω for some $Ω$ \subset *X* geodesically convex with $\text{diam}(\Omega) \leq D$.

$$
\blacktriangleright \; Ric_{g,\Psi,N} := Ric_g - (N-n)^{\frac{\nabla^2 \Psi^{1/N-n}}{\Psi^{N-n}}} \geq Kg
$$

THM[E. Milman '12] For every $K \in \mathbb{R}$, $N, D > 0$ there exists an explicit function $\mathcal{I}_{K,N,D}$: $[0,1] \rightarrow \mathbb{R}^+$ such that if (M^n, g, Ψ) satisfies $CDD(K, N, D)$ then $\mathcal{I}_{(M^n,d_{\sigma},\Psi \text{vol})} \geq \mathcal{I}_{K,N,D}$. R K: -for $K > 0, N = n \in \mathbb{N}$ and $D \geq \text{diam}(S_K^n)$, one re-obtains (LGI) since in this case $\mathcal{I}_{K,N,D}=\mathcal{I}_{(S_K^N,\mathsf{d}_{\mathcal{S}_{S_K^N}},\mathsf{vol}_{S_K^N}/(\mathsf{vol}_{S_K^N}(S_K^N)))}.$

- for $K \leq 0$ there is not a model space as in (LGI) , nevertheless there is a model isoperimetric profile function defined piecewise in an explicit way.

THM[Cavalletti-M. '15] Levy-Gromov-Milman isoperimetric inequality holds in *RCD*(*K, N*) spaces, i.e. if (X, d, m) is an $RCD(K, N)$ space with $m(X) = 1$ and $\dim(X) \leq D$ then $\mathcal{I}_{(X,d,m)} \geq \mathcal{I}_{K,N,D}$.

COR: If (X, d, m) , with $m(X) = 1$, is an $RCD(K, N)$ space for some $K > 0$ and $2 < N \in \mathbb{N}$ then (LGI) holds, i.e. for every Borel subset $E \subset X$

$$
\mathfrak{m}^+(E) \geq \frac{|\partial B|}{|S|}
$$

where $S = S_K^N$ round sphere with $Ric \equiv K$, and $B \subset S$ is a spherical cap s.t. $\mathfrak{m}(E) = \frac{|B|}{|S|}$.

RK: Seems new even for Ricci limit spaces and Alexandrov spaces (sketch of proof by Petrunin in curv > 1)

Proof part 1: 1-D localization

Assume for the moment that given $E \subset X$ we can find a "1-D localization" $\{X_a\}_{a\in Q}$ of X, i.e.

1. $\{X_q\}_{q \in Q}$ is a partition of X, i.e. $X = \bigcup_{q \in Q}^{\infty} X_q$, 2. $\mathfrak{m} = \int_Q \mathfrak{m}_q \, \alpha(dq)$, with $\alpha(Q) = 1$ and $\mathfrak{m}_q(X_q) = \mathfrak{m}_q(X) = 1$ for α -a.e. $\alpha \in \mathcal{Q}$ \rightsquigarrow disintegration of m (kind of non-straight Fubini) 3. X_a is a geodesic in X and $(X_a, |·|, m_a)$ is a $CD(K, N)$ space 4. $\mathfrak{m}_q(E \cap X_q) = \mathfrak{m}(E)$, for α -a.e. $q \in Q$,

RK the first two assumptions are mild, the characterizing properties are the last two.

Proof part 2: conclusion

If for every given $E \subset X$ we can find a 1-D localization as above then

$$
m^{+}(E) = \liminf_{\varepsilon \to 0^{+}} \frac{m(E^{\varepsilon}) - m(E)}{\varepsilon}
$$

\n
$$
= \liminf_{\varepsilon \to 0^{+}} \int_{Q} \frac{m_{q}(E^{\varepsilon}) - m_{q}(E)}{\varepsilon} \alpha(dq) \text{ by 2.}
$$

\n
$$
\geq \int_{Q} \liminf_{\varepsilon \to 0^{+}} \frac{m_{q}(E^{\varepsilon} \cap X_{q}) - m_{q}(E \cap X_{q})}{\varepsilon} \alpha(dq) \text{ by 2.}
$$

\n
$$
\geq \int_{Q} m_{q}^{+}(E \cap X_{q}) \alpha(dq), \text{ by } E^{\varepsilon} \cap X_{q} \supset (E \cap X_{q})^{\varepsilon} \cap X_{q}
$$

\n
$$
\geq \int_{Q} \mathcal{I}_{K,N,D}(m_{q}(E)) \alpha(dq) \text{ by 3.+Smooth LGMI}
$$

\n
$$
= \int_{Q} \mathcal{I}_{K,N,D}(m(E)) \alpha(dq) \text{ by 4.} = \mathcal{I}_{K,N,D}(m(E)).
$$

Proof part 3: how to construct a 1-D localization

- Recall that $m(X) = 1$, fix $E \subset X$ with $m(E) \in (0, 1)$,
- External $\mu_0 := \frac{\chi_E}{m(E)} m$ and $\mu_1 := \frac{1 \chi_E}{1 m(E)} m = \frac{\chi_{X \setminus E}}{m(X \setminus E)} m$
- \triangleright Consider the L^1 -optimal transport problem

$$
\inf\left\{\int_{X\times X}d(x,y)\,d\gamma\,:\,\gamma\in\mathcal{P}(X\times X),(\pi_1)_\sharp\gamma=\mu_0,(\pi_2)_\sharp\gamma=\mu_1\right\}
$$

 \triangleright By Optimal Transport techniques there exists a minimizer $\gamma \in \mathcal{P}(X \times X)$ and a 1-Lipschitz function $\varphi : X \to \mathbb{R}$ called Kantorovich potential such that, denoted

 $\Gamma := \{ (x, y) \in X \times X : \varphi(x) - \varphi(y) = d(x, y) \},$

 γ is concentrated on Γ .

- ▶ The relation \sim on X given by $x \sim y$ iff $(x, y) \in \Gamma$ or $(y, x) \in \Gamma$ is an equivalence relation on X (up to an m-negligible subset) and the equivalence classes are geodesics. \rightarrow partition of X into geodesics driven by E
- \triangleright More work to prove properties 3. and 4.

Why *L*¹-trasport?

It is more standard to consider the L^2 -optimal tranport problem: given $\mu_0, \mu_1 \in \mathcal{P}(X)$ let

 $\inf \Big\{ \ \Big\}$ $X \times X$ $\mathsf{d}(x,y)^2\,\mathsf{d}\gamma\,:\,\gamma\in\mathcal{P}(X\times X),(\pi_1)_\sharp\gamma=\mu_0,(\pi_2)_\sharp\gamma=\mu_1\bigg\}.$ *.*

Which defines a metric W_2 on $P(X)$.

▶ Now if $(\mu_t)_{t \in [0,1]}$ is a W_2 geodesic from μ_0 to μ_1 we know that μ_t is concentrated on midpoints of geodesics from *supp* (μ_0) to *supp* (μ_1) :

 $\mu_t({\{\gamma(t) : \gamma \text{ geod}, \gamma(0) \in \text{supp}(\mu_0), \gamma(1) \in \text{supp}(\mu_1)\}) = 1,$

- **In** moreover, from d^2 -monotonicity, if γ_1 and γ_2 are such geodesics with $\gamma_1(0) \neq \gamma_2(0)$ then $\gamma_1(t) \neq \gamma_2(t)$ in a.e. sense. \rightsquigarrow the transport at time *t* is given by a map (Brenier map).
- \blacktriangleright BUT it may happen $\gamma_1(s) = \gamma_2(t)$ for $s \neq t$ \rightarrow L²-transport does not induce an equivalence relation.
- \triangleright On the other hand L^1 transport does induce an equivalence relation into rays where the transport is performed \rightsquigarrow partition of the space into 1D objects.

Brief history of 1-D localization technique

The localization technique is a way to reduce an a-priori complicated high dimensional problem to a simpler 1-dimensional problem.

- In \mathbb{R}^n or S^n , using the high symmetry of the space, 1-D localizations can be usually obtained via iterative bisections
	- \triangleright Roots in a paper by Payne-Weinberger '60 about sharp estimate of 1*st* eigenvalue of Laplacian
	- ▶ Formalized by Gromov-V. Milman '87, Kannan Lovász -Simonovits '95
- Extended by B. Klartag '14 to Riemannian manifolds via $L¹$ -optimal trasport: no symmetry but still heavily using the smoothness of the space (estimates on 2*nd* fundamental form of level sets of the Kantorovich potential φ)
- Extension to non-smooth spaces by Cavalletti-M. 15 .
- It is well known that in smooth setting (LGI) are rigid: if (M^n, g) has $Ric_g \ge (n-1)g$ and if there exists $v \in (0, 1)$ such that $\mathcal{I}_{(M^n,d_g,vol/(vol(M)))}(v) = \mathcal{I}_{(S^n,d_{gcn},vol_{S^n}/(vol_{S^n}(S^n)))}(v)$ then *M* is isometric to *Sn*.
- \triangleright Q: is it true also for non smooth spaces?
- \triangleright NO: spherical suspensions have the same isoperimetric profile function of the round sphere.
- \triangleright Q: are spherical suspensions the only cases? YES!

THM (Cavalletti-M. '15) If (X, d, m) is an $RCD(N - 1, N)$ space and there exists $v \in (0,1)$ such that $\mathcal{I}_{(X,d,\mathfrak{m})}(v) = \mathcal{I}_{N-1,N,\pi}(v)$,

Then (X,d,\mathfrak{m}) is a spherical suspension: $X \simeq [0,\pi] \times_{\sin}^{N-1} Y$ as m.m.s. for some $RCD(N-2, N-1)$ space (Y, d_Y, m_Y)

Moreover, in this case, the following hold:

\n- i) For every
$$
v \in [0,1]
$$
 it holds $\mathcal{I}_{(X,\mathsf{d},\mathfrak{m})}(v) = \mathcal{I}_{N-1,N,\infty}(v)$. \leadsto Q1
\n- ii) For every $v \in [0,1]$ there exists a Borel subset $A \subset X$ with $\mathfrak{m}(A) = v$ such that $\mathfrak{m}^+(A) = \mathcal{I}_{(X,\mathsf{d},\mathfrak{m})}(v) = \mathcal{I}_{N-1,N,\pi}(v)$.
\n- \leadsto Q2
\n

iii) If m(A)
$$
\in
$$
 (0, 1) then m⁺(A) = $\mathcal{I}_{(X,\mathrm{d},\mathrm{m})}(v) = \mathcal{I}_{N-1,N,\pi}(v)$ if
and only if $\bar{A} = \{(t, y) \in [0, \pi] \times_{\sin}^{N-1} Y : t \in [0, r_v] \}$ or
 $\bar{A} = \{(t, y) \in [0, \pi] \times_{\sin}^{N-1} Y : t \in [\pi - r_v, \pi] \}$,
where \bar{A} is the closure of A and $r_v \in (0, \pi)$ is chosen so that

$$
\int_{[0,r_v]} c_N(\sin(t))^{N-1} dt = v, c_N \text{ being given by}
$$

$$
c_N^{-1} := \int_{[0,\pi]} (\sin(t))^{N-1} dt. \rightsquigarrow Q3
$$

Proof of rigidity

- The idea is to show that diam $(X) = \pi$ and then apply Cheng-Ketterer Maximal Diameter Theorem which gives that *X* is a spherical suspension.
- Assume by contradiction there exists $\bar{v} \in (0,1)$ such that $\mathcal{I}_{(X,\mathsf{d},\mathfrak{m})}(\bar{v}) = \mathcal{I}_{N-1,N,\pi}(\bar{v})$ but diam $(X) \leq \pi - \varepsilon_0 < \pi$.
- \blacktriangleright Key observation: there exists $\delta > 0$ such that

$$
\mathcal{I}_{N-1,N,\pi}(\bar{v}) \leq \mathcal{I}_{N-1,N,D}(\bar{v}) - \delta \text{ for every } D \in (0,\pi-\varepsilon_0].
$$

- If Let now $E \subset X$ be such that $m(E) = \overline{v}$ and $\mathfrak{m}^+(E) \leq \mathcal{I}_{(X,\mathsf{d},\mathfrak{m})}(\bar{\mathsf{v}}) + \frac{\delta}{2} = \mathcal{I}_{\mathsf{N}-1,\mathsf{N},\pi}(\bar{\mathsf{v}}) + \frac{\delta}{2}.$
- \triangleright Arguing as in the proof of the isoperimetric inequality by 1-D localization associated to *E* we get

$$
\mathcal{I}_{N-1,N,\pi}(\bar{v}) + \frac{\delta}{2} \geq m^+(E) \geq \int_Q m_q^+(E \cap X_q) \alpha(dq)
$$
\n
$$
\geq \int_Q \mathcal{I}_{N-1,N,|\text{diam}(X_q)|}(\bar{v}) \alpha(dq) \text{ by } m_q(E) = \bar{v}
$$
\n
$$
\geq \mathcal{I}_{N-1,N,\pi}(\bar{v}) + \delta \text{ by } \text{diam}(X_q) \leq \text{diam}(X)
$$

Almost rigidity of (LGI)

Q: what happens if $\mathcal{I}_{(X,d,m)}$ is close to the model $\mathcal{I}_{N-1,N,\pi}$? Does it imply (*X,* d*,* m) close to a spherical suspension?

THM(Cavalletti-M.'15) For every $N \in [2, \infty)$, $v \in (0, 1)$, $\varepsilon > 0$ there exists $\bar{\delta} = \bar{\delta} (N,v,\varepsilon) > 0$ such that the following hold. For every $\delta \in [0, \bar{\delta}],$ if (X, d, m) is an $RCD(N - 1 - \delta, N + \delta)$ space satisfying

 $\mathcal{I}_{(X,\mathsf{d},\mathfrak{m})}(v) \leq \mathcal{I}_{N-1,N,\pi}(v) + \delta,$

then there exists an $RCD(N-2, N-1)$ space (Y, d_Y, m_Y) with $m_Y(Y) = 1$ such that

$$
d_{mGH}(X,[0,\pi]\times_{\sin}^{N-1}Y)\leq \varepsilon.
$$

RK The almost rigidity seems new even for smooth manifolds: if (M^n, g) has $Ric_{\sigma} \ge (n-1-\delta)g$ and $\mathcal{I}_{(M,d_{\sigma},\text{vol/vol}(M))}(v) \leq \mathcal{I}_{N-1,N,\pi}(v) + \delta$ then (M^n,g) is *mGH*-close to a spherical suspension. \rightsquigarrow an example of application of *RCD* spaces to smooth manifolds with lower Ricci bounds.

 \triangleright Step 1 making quantitative the arguments of the rigidity theorem we get that the diameter of *X* must be almost maximal, more precisely: for every $N \in [2, \infty)$, $v \in (0, 1)$, $\eta > 0$ there exists $\bar{\delta} = \bar{\delta} (N, \nu, \eta) > 0$ such that if $(X, \mathsf{d}, \mathfrak{m})$ is an $RCD(N - 1 - \delta, N + \delta)$ space satisfying $\mathcal{I}_{(\mathsf{X},\mathsf{d},\mathfrak{m})}(v) \leq \mathcal{I}_{\mathsf{N}-1,\mathsf{N},\infty}(v)+\delta,$ for some $\delta \leq \bar{\delta}$ then diam(*X*) ≥ π − η .
► Step 2 conclude by a compactness-contradiction argument:

- **Assume by contradiction there exist** $\varepsilon_0 > 0$ and a sequence (X_j, d_j, m_j) of $RCD(N - 1 - \frac{1}{j}, N + \frac{1}{j})$ spaces such that $\mathcal{I}_{(\mathsf{X}_j,\mathsf{d}_j,\mathfrak{m}_j)}(\mathsf{v}) \leq \mathcal{I}_{\mathsf{N}-1,\mathsf{N},\infty}(\mathsf{v}) + \frac{1}{j}$ but $d_{mGH}(X_j, [0, \pi] \times_{\text{sin}}^{N-1} Y) \geq \varepsilon_0$ for every $j \in \mathbb{N}$ and every $RCD(N-2, N-1)$ space (Y, d_Y, m_Y) with $m_Y(Y) = 1$.
- **Figure 1** Then by Step 1 we get diam $(X_i) \to \pi$
- \triangleright by Gromov's compactness Theorem $+$ stability of $RCD(N-1, N)$ there exists an $RCD(N-1, N)$ space $(X_{\infty}, d_{\infty}, \mathfrak{m}_{\infty})$ such that, up to subsequences, $X_i \to X_{\infty}$ in *mGH*-sense.
- ► by since diam is continuous under *mGH*-convergence, we get $diam(X_{\infty}) = \pi$, so by Max Diam Thm X_{∞} is a spherical suspension; contradiction.

Further results via 1-D localization

In a second paper still in collaboration with Cavalletti we used 1-D localization to prove further inequalities, many of them answer open problems proposed by Villani in its celebrated book "Optimal transport: old and new".

If (X, d, m) is $RCD(K, N)$ with $K > 0$, then

- \triangleright *p*-spectral gap: Let $\lambda_{(X,\mathsf{d},\mathfrak{m})}^{1,p} = \inf \left\{ \frac{\int_X |\nabla f|^p d\mathfrak{m}}{\int_X |f|^p d\mathfrak{m}} \right\}$ $\int_{X}^{R} \frac{|\nabla f|^{p} d\mathfrak{m}}{|f_{X}|^{p} d\mathfrak{m}}$: $f \neq 0$, $\int_{X} f |f|^{p-2} d\mathfrak{m} = 0$, then $\lambda_{(X,\mathsf{d},\mathfrak{m})}^{1,p} \ \geq \ \lambda_{K,N}^{1,p},$ with "=" iff X is a spherical suspension, and "almost $=$ " iff X is mGH -close to a spherical suspension.
- ▶ Dimensional improvement of Log-Sobolev
- for any $f: X \to [0, \infty)$ with $\int_X f \, dm = 1$ it holds $\frac{2}{N-1}$ $\int_{X} f \log f \, dm \leq \int_{\{f > 0\}}$ $\frac{|\nabla f|^2}{f}$ *d*m, \blacktriangleright Sharp Sobolev

$$
\frac{KN}{(p-2)(N-1)}\left\{\left(\int_X|f|^p\,dm\right)^{\frac{2}{p}}-\int_X|f|^2\,dm\right\}\leq\int_X|\nabla f|^2\,dm,
$$

Euclidean tangents to *RCD*(*K,N*) spaces

- \triangleright Cheeger-Colding '97: for limit spaces the local blow ups are a.e. unique and euclidean.
- \triangleright Q: is it true also for $RCD(K, N)$ spaces?
- \triangleright Notation Fixed $\bar{x} \in X$, call $Tan(X, d, m, \bar{x})$ the set of local blow ups (also called tangent cones) of X at \bar{x} .
- \blacktriangleright More precisely, for $r \in (0, 1)$ consider the p.m.m.s. $(X, r^{-1}d, m(B_r(\bar{x}))^{-1} \cdot m, \bar{x}).$ Given any sequence $r_n \downarrow 0$, by Gromov compactness, there exists a subsequence $r_{n_k} \downarrow 0$ and a limit space (Y, d_Y, m_Y, \bar{y}) such that $(X, r_{n_k}^{-1}d, m(B_{r_{n_k}}(\bar{x}))^{-1} \cdot m, \bar{x}) \rightarrow (Y, d_Y, m_Y, \bar{y}).$ By definition $Tan(X, d, m, \bar{x})$ is the set of all these limit spaces (Y, dy, m_Y, \bar{y}) .

THM 1 [Gigli-M.-Rajala '13] Let (*X,* d*,* m) be an *RCD*(*K, N*) space. Then for m-a.e. $x \in X$ there exists $n = n(x) \in \mathbb{N}$, $n \leq N$, such that

 $(\mathbb{R}^n, d_F, \mathcal{L}_n, 0) \in \text{Tan}(X, d, \mathfrak{m}, x),$

where d_F is the Euclidean distance and \mathcal{L}_n is the *n*-dimensional Lebesgue measure normalized so that $\int_{B_1(0)} 1 - |x| dL_n(x) = 1$.

Idea of proof

The key technical tool of the proof is the Splitting theorem in *RCD*(0*, N*) spaces by Gigli (non smooth generalization of the classical Cheeger-Gromoll Splitting Thm)

- 1. m-a.e. $\bar{x} \in X$ is the midpoint of some geodesic
- 2. Take a sequence of blow ups at such \bar{x} , by Gromov compactness and by Stability they converge to a limit $RCD(0, N)$ space $(Y, d_Y, m_Y, \overline{y}) \in Tan(X, d, m, \overline{x})$
- 3. By the choice of \bar{x} , Y contains a line and therefore splits an $\mathbb R$ factor, by the splitting thm: $Y \cong Y' \times \mathbb{R}$
- 4. Repeating the construction for Y' in place of X we get that there exists a local blow up \tilde{Y}' of Y' that splits an R factor: $\tilde{Y'}=Y''\times\mathbb{R}$
- 5. Adapting ideas of Preiss (and of Le Donne) we prove that m-a.e. tangents of tangents are tangent themselves, i.e. $Y'' \times \mathbb{R}^2 = \tilde{Y}' \times \mathbb{R} \in \text{Tan}(X, \text{d}, \mathfrak{m}, \bar{x})$
- 6. repeating the scheme iteratively we conclude.

Further structure of *RCD*(*K,N*) spaces

 $Q:$ In the previous Thm we have existence of a euclidean tangent cone; but is the tangent cone unique?

THM 2[Naber-M.'14] Let (*X,* d*,* m) be an *RCD*(*K, N*) space. Then for m-a.e. $x \in X$ the tangent cone IS UNIQUE and euclidean, i.e. there exists $n = n(x) \in \mathbb{N}$, $n \leq N$, such that

 $\{(\mathbb{R}^n, d_F, \mathcal{L}_n, 0)\} = \text{Tan}(X, d, \mathfrak{m}, x),$

More precisely we have

THM 3[Naber-M.'14] [Rectifiability of *RCD*(*K, N*)-spaces] Let (X, d, m) be an $RCD(K, N)$ space. Then, for every $\varepsilon > 0$ there exists a countable collection $\{R^\varepsilon_j\}_{j\in\mathbb{N}}$ of \mathfrak{m} -measurable subsets of X , covering X up to an \mathfrak{m} -negligible set, such that each R_j^ε is $1 + \varepsilon$ -biLipshitz to a measurable subset of \mathbb{R}^{k_j} , for some $1 \leq k_i \leq N$, k_i possibly depending on *j*.

Preliminary remarks

- If X is a Ricci limit space, Thm 2 was first proved by Cheeger-Colding '00: prove hessian estimates on harmonic approximations of distance functions, and use these to force splitting behavior.
- In the context of general metric spaces the notion of a hessian is still not at the same level as it is for a smooth manifold, and cannot be used in such strength (interesting work of Gigli in this direction though).
- \triangleright So we prove entirely new estimates, both in the form of gradient estimates on the excess function and a new almost splitting theorem with excess, which will allow us to use the distance functions directly as our chart maps. New even in the smooth context.

Strategy of proof, 1: the A_k 's.

Define

 $A_k := \{x \in X : \exists$ a tangent cone of X at x equal to \mathbb{R}^k but no tangent cone at x splits \mathbb{R}^{k+1} .

We first prove that

 $-A_k$ is m-measurable (it is difference of analytic sets),

- by THM 1 we get $m(X \setminus \bigcup_{k \in \mathbb{N}} A_k) = 0$.

So THM 2-3 are a consequence of the following

THM 4. Let (X, d, m) be an $RCD(K, N)$ -space, and let A_k be as above. Then

(1) For m-a.e. $x \in A_k$ the tangent cone of X at x is unique and isomorphic to the *k*-dimensional euclidean space.

(2) There exists $\bar{\varepsilon} = \bar{\varepsilon}(K, N) > 0$ such that, for every $0 < \varepsilon < \bar{\varepsilon}$, A_k is *k*-rectifiable via $1 + \varepsilon$ -biLipschitz maps. More precisely, for each $\varepsilon > 0$ we can cover A_k , up to an m-negligible subset, by a countable collection of sets U_ε^k with the property that each one is $1 + \varepsilon$ -biLipschitz to a subset of \mathbb{R}^k .

Strategy of proof, 2: rough idea

- 1. Given $\bar{x} \in A_k$, for every $0 < \delta \ll 1$ there exists $r > 0$ such that $d_{mGH}(B_{\delta^{-1}r}(\bar{x}), (B_{\delta^{-1}r}(0^k)) \leq \delta r$.
- 2. For some radius $r \ll R \ll \delta^{-1}r$ we can then pick points ${p_i, q_i}_{i=1,\ldots,k} \in X$ corresponding to the bases $\pm Re_i$ of \mathbb{R}^k . Define the map
	- $\vec{d} = \left(\mathsf{d}(p_1,\cdot)-\mathsf{d}(p_1,\bar{x}),\ldots,\mathsf{d}(p_k,\cdot)-\mathsf{d}(p_k,\bar{x})\right) : B_r(\bar{x}) \to \mathbb{R}^k.$ For δ sufficiently small, \vec{d} is a εr -mGH map $B_r(\vec{x}) \to B_r(0^k)$.
- 3. MAIN CLAIM: \exists a set $U_{\varepsilon} \subseteq B_r(\overline{x})$ of almost full measure, i.e. $m(B_r(\bar{x}) \setminus U_{\varepsilon}) \leq \varepsilon$, s.t. $\forall x \in U_{\varepsilon}$ and $s \leq r$, the restriction $\mathsf{map} \,\, \vec{d}: B_{\mathsf{s}}(\mathsf{x}) \to \mathbb{R}^k$ is an ε s-measured Gromov Hausdorff map.
- 4. From this we can show that the restriction map $\vec{d} : U_\varepsilon \to \mathbb{R}^k$ is in fact $1 + \varepsilon$ -bilipschitz onto its image. By covering A_k with such sets we will show that A_k is itself rectifiable.

Strategy of proof, 3: two new ingredients

Define $e_{p,q}(y) := d(p, y) + d(q, y) - d(p, q)$, called excess function. In order to get the main claim, two new ingredients

1. Gradient Excess Estimates. We show that the gradient of the excess functions e_{p_i,q_i} of the points $\{p_i,q_i\}$ is small in L^2 , more precisely: for the above $\delta > 0$ small enough, then

$$
\int_{B_r(\bar x)}|De_{p_i,q_i}|^2\,dm\leq \varepsilon_1.
$$

2. Almost splitting via excess: given $x \in B_r(\bar{x})$ and $s \in (0, r)$, if $\int_{B_{\varepsilon}(x)}|D e_{\rho_i, q_i}|^2\, d\mathfrak{m} < \varepsilon_1$, then

$$
d_{mGH}\left(\mathcal{B}_s(x),\mathcal{B}_s^{\mathbb{R}\times Y}((0,y))\right)<\varepsilon_2\,s,
$$

for some m.m.s. (Y, d_Y, m_Y, y) . I.e.: gradient of excess small in $L^2 \Rightarrow$ close to a splitting. Proof by contradiction, in the limit we enter into the framework of the arguments of Splitting Theorem.

Strategy of proof, 4: construction of U_{ε}

Construction via a maximal function argument: for $x \in B_r(\bar{x})$ call

$$
M(x) := \sup_{s \in (0,r)} \sum_{i=1}^k \int_{B_s(x)} |De_{p_i,q_i}|^2 dm.
$$

Define

$$
U_{\varepsilon}:=\{x\in B_r(\bar{x}):M(x)<\varepsilon\}.
$$

By the Gradient Excess Estimates + $L^1 \rightarrow L^{1, weak}$ continuity of maximal function operator

 \Rightarrow for $\delta > 0$ small enough we have $m(B_r(\bar{x}) \setminus U_{\epsilon}) < \epsilon$.

 $\sum_{i=1}^k \int_{B_{\mathcal{S}}(\mathsf{x})} |D e_{\mathsf{p}_i, \mathsf{q}_i}|^2 \ d\mathfrak{m} \leq \varepsilon$ s. An iteration of the almost splitting But $\forall x \in U_{\varepsilon}$, $\forall s \leq r$, by construction, theorem via excess estimates implies then that

 $d_{mGH}(B_s(x), B_s(0^k)) \leq \varepsilon_2 s, \quad \forall s \leq r \quad \Rightarrow \quad \text{Main claim.}$

Challenges for the future

- \triangleright As Alexandrov spaces played a crucial role to establish new theorem for smooth manifolds with lower sectional curvature bounds, we expect *RCD*(*K, N*) spaces to be useful to give new insights for smooth manifolds with lower Ricci bounds.
- ► For Ricci limits, Colding-Naber '11 and Kapovitch-Li '15 proved that the dimension of the euclidean tangent space is constant a.e. Is it true also also for *RCD*(*K, N*) spaces?
- If It is it true that any $RCD(K, N)$ space is a Ricci limit?
- If It is it true that any $RCD(1, 2)$ space is Alexandrov with curv > 1 ?
- \blacktriangleright "Ricci flow" for metric measure spaces? Some interesting recent insights by Haslhofer-Naber, Kleiner-Lott, Lott, Gigli-Mantegazza, Sturm,...

WITHANK YOU FOR THE ATTENTION!!