Fully Nonlinear Flows with Surgery

Simon Brendle

May 2, 2016

This is joint work with G. Huisken. We will look at *n*-dimensional hypersurfaces $M^n \subseteq N^{n+1}$ where we assume that *M* is smooth, closed, and embedded. To fix notation we will denote the second fundamental form as h_{ij} with eigenvalues $\lambda_1 \leq \ldots \leq \lambda_n$. We will be interested in parabolic flows.

Definition 1 *M is 2-convex if and only if* $\lambda_1 + \lambda_2 > 0$ *.*

One natural way to evolve a hypersurface is by curvature flow. The speed will be given by $-H\nu$ where $H = \lambda_1 + \ldots + \lambda_n.$

Theorem 1 (Huisken-Sinestrari) Let $n \geq 3$. Assume $M_0^n \subset \mathbb{R}^{n+1}$ is 2-convex, embedded, closed, and *evolve M*⁰ *by the mean curvature flow. Then there exists a mean curvature flow with finitely many surgeries which become extinct in finite time.*

The question now becomes how we perform the surgery. Either via a *neck* modeled by a cylinder, or a *cap*. The case for *n* = 2 was proven analagously by Brendle and Huisken, as well as by Haslhofer-Kleiner. What's interesting about the lower dimensional case is that this framework extends over to the case of hypersurfaces in a Riemannian manifold provided either

- the dimension of the hypersurface is 2, or
- if $n \geq 3$ the space is symmetric (i.e. $\overline{\nabla Rm} = 0$).

If neither of these cases hold then 2-convexity is not preserved in higher dimensions in non-symmetric spaces. To get around this problem, we would like to use a flow that preserves 2-convexity in the Riemannian setting. There are a couple of different flows that can satisfy this, but they are all of the same basic type. The first mean curvature flow can have speed $-G\nu$ where

$$
G = \left(\sum_{i < j} \frac{1}{\lambda_i + \lambda_j}\right)^{-1}.
$$

In any Riemannian manifold this type of flow will preserve 2-convexity. The issue however is that this flow is fully nonlinear. There are however some basic algebraic properties for 2-convex. Recalling that $\lambda_1 + \lambda_2 > 0$ we have

- 1. $0 < \frac{\partial G}{\partial \lambda_i} \le C(n)$,
- 2. $G \leq C(n)H$,
- 3. *G* is strictly concave (the Hessian of *G* gives a quadratic form).

If we look at the evolution of *G* we have

$$
\frac{\partial G}{\partial t} = \frac{\partial G}{\partial h_{ij}} (D_i D_j G + h_{ik} h_{jk} G + \overline{R}_{i\nu j\nu} G)
$$

Note that the infimum of *G* is bounded below as long as *t* is bounded. If we additionally impose the assumption that the ambient curvature $R_{1313} + R_{2323} \geq 0$ then you can demonstrate that inf *G* blows up in finite time. It is this last property that gives us finite time extinction.

Lemma 1 $\frac{G}{H}$ *is uniformly bounded below for bounded time intervals. Furthermore this implies that the flow is uniformly parabolic.*

Proof: This can be easily shown by the Maximum principle. ◻

Theorem 2 (Brendle, Huisken) Let M_t^n be a flow with speed G.

- *1. Convexity Estimate: For every* $\delta > 0$ *there exists* $C = C(M_0, N, T, \delta)$ *such that* $\lambda_1 \geq -\delta G C$ *.*
- 2. *Cylindrical Estimate: For every* $\eta > 0$ *there exists* $\delta > 0$ *and C such that if* $\lambda_1 \leq \delta G$ *then this implies that* $\lambda_n - \lambda_2 \leq \eta G$ *.*
- 3. **Inscribed Radius Bound**: (Established by Langford-Andrews-McCoy) The inscribed radius is $\geq \frac{\alpha}{G}$ *where* $\alpha = \alpha(M_0, N, T)$ *.*
- *4. Curvature Derivative Estimate: There exists constant* Λ *such that* $\alpha^2 G^{-2} |\nabla h| + \alpha^3 G^{-3} |\nabla^2 h| \leq \Lambda$.

Corollary 1 *There exists a flow with finitely many surgeries in bounded time intervals.*

If *N* satisfies that condition that $\overline{R}_{1313} + \overline{R}_{2323} \ge 0$, then the flow becomes extinct in finite time.

We shall now focus on the estimates of this theorem.

Proof: Consider the case where $N = \mathbb{R}^{n+1}$. Note that sup $\frac{H}{G}$ is monotone decreasing, but this monotonicity is strict unless *M* is a cylinder or a sphere. This can be shown by using Stampacchia iteration, which yields that inequality

$$
H \leq \left(\frac{(n-1)^2(n+2)}{4} + \delta\right)G + C(\delta, T, M_0).
$$

Note that on $\mathbb{S}^{n-1} \times \mathbb{R}$ we have that $H = \frac{(n-1)^2(n+2)}{4}G$. In the blow-up limit we have that $H \leq \frac{(n-1)^2(n+2)}{4}G$. Algebraically we have $\lambda_1 \ge 0$ and $\lambda_1 = 0$ only if $\lambda_i = 0$ for all $i \in \{2, \ldots, n\}$. Using this inequality, we get both the convexity and cylindrical estimates. We now focus on the curvature derivative estimate (the inscribed radius bound follows from the work done by Langford-Andrews-McCoy which is straightforward). This result was shown by Brendle-White using GMT and monotonicity, along with the result by Haslhofer-Kleiner where we take $H > 0$, and Huisken-Sinestravi using the maximum principle (this result requires 2-convexity). We need another result in order to prove this last part.

Theorem 3 (Splitting Theorem) *Suppose we have a smooth blow-up limit. Then this implies that* $\lambda_1 \geq 0$ *everywhere. Furthermore, if* $\lambda_1 = 0$ *somewhere on the limit, this implies that the flow is a family of shrinking round cylinders.*

Theorem 4 Suppose we have a flow $M_t = \partial \Omega_t$ with $t \in [-r^2, 0]$ and $B_r(p) \subset \Omega_t$ for all t, and additionally *that* $\langle x - p, \nu(x) \rangle \ge 10^{-3} \nu$ *with* $G \ge \beta H$ *for all* $x \in M_t \cap B_{2r}(p)$ *, then this implies that*

$$
r^2|\nabla h| + r^3|\nabla^2 h| \leq \Lambda
$$

for all $x \in M_t \cap B_{\frac{4r}{3}}(p)$ *.*

We now come back to the proof of curvature derivative estimate. We argue this by contradiction. Suppose there exists (x_k, t_k) such that $F(x_k, t_k) \to \infty$ and $\alpha^2 G|\nabla h| + \alpha^3 G^{-3}|\nabla^2 h| > \Lambda$ at (x_k, t_k) . Pick points $(\overline{x}_k, \overline{t}_k)$ such that $\bar{t}_k < t_k$. Then we have that $G(\bar{x}_k, \bar{t}_k) > G(x_k, t_k) \to \infty$, and therefore $\alpha^2 G^{-2} |\nabla h| + \alpha^3 |\nabla^2 h| > \Lambda$ and therefore

$$
\alpha^2 G^{-2} |\nabla h| + \alpha^3 |\nabla^2 h| \leq \Lambda
$$

for all (x, t) such that $t \le \overline{t}_k$ and $G(x, t) \ge 2G(\overline{x}_k, \overline{t}_k)$. Given points p, x we will let $C_{p,x}$ be the pseudo cone with vertex at *x*. Here we will have that $\lambda_1 < -\frac{1}{1000}|x-p|$.

Consider the inscribed ball at (\bar{x}_k, \bar{t}_k) with center at $p_k \in \mathbb{R}^{n+1}$ and $r_k = \alpha G(\bar{x}_k, \bar{t}_k)^{-1}$, then we have two possibilities:

- $C_{p_k,x} \subset \Omega_t$, for all $t \in [\bar{t}_k r_k^2, \bar{t}_k]$ and for all $x \in \Omega_t \cap B_{2r_k}(p_k)$ implying that the space is star-shaped and therefore $\alpha^2 G^{-2} |\nabla h| + \alpha^3 G^{-3} |\nabla^2 h| \leq \Lambda$ at $(\overline{x}_k, \overline{t}_k)$ which contradicts our assumption.
- the psuedo cone is not always contained in Ω_t . In this case, we look at a borderline situation where (for some $\tilde{t}_k \in [\bar{t}_k - r_k^2, \bar{t}_k]$) a pseudo cone is contained in $\Omega_{\tilde{t}_k}$ and touches the boundary $M_{\tilde{t}_k} = \partial \Omega_{\tilde{t}_k}$ from the insite at some point y_k . At the point y_k , we have $\lambda_1(y_k, \tilde{t}_k) < -\frac{1}{1000} \frac{1}{r_k} \sim G(\overline{x}_k, \overline{t}_k)$. Therefore by the convexity estimate we have that $G(y_k, \tilde{t}_k) \gg G(\overline{x}_k, \overline{t}_k)$. In particular, the curvature derivative estimate holds at the curvature scale $G(y_k, \tilde{t}_k)$. Therefore, the Neck Detection Lemma can be applied at y_k . To summarize, near the point y_k , $M_{\tilde{t}_k}$ looks like a long cylinder, and furthermore $M_{\tilde{t}_k}$ encloses a cone with opening angle $\sim \frac{1}{100}$. This setup contradicts elementary geometry.

◻