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This is joint work with G. Huisken. We will look at n-dimensional hypersurfaces M™ ¢ N™*! where we
assume that M is smooth, closed, and embedded. To fix notation we will denote the second fundamental
form as h;; with eigenvalues A\; <... < A,. We will be interested in parabolic flows.

Definition 1 M is 2-convex if and only if A1 + Ao > 0.

One natural way to evolve a hypersurface is by curvature flow. The speed will be given by —Hv where
H=X\+...+\,.

Theorem 1 (Huisken-Sinestrari) Let n > 3. Assume MY c R™! is 2-conver, embedded, closed, and
evolve My by the mean curvature flow. Then there exists a mean curvature flow with finitely many surgeries
which become extinct in finite time.

The question now becomes how we perform the surgery. Either via a neck modeled by a cylinder, or a cap.
The case for n = 2 was proven analagously by Brendle and Huisken, as well as by Haslhofer-Kleiner. What’s
interesting about the lower dimensional case is that this framework extends over to the case of hypersurfaces
in a Riemannian manifold provided either



e the dimension of the hypersurface is 2, or
e if n >3 the space is symmetric (i.e. VRm =0).

If neither of these cases hold then 2-convexity is not preserved in higher dimensions in non-symmetric spaces.
To get around this problem, we would like to use a flow that preserves 2-convexity in the Riemannian setting.
There are a couple of different flows that can satisfy this, but they are all of the same basic type. The first
mean curvature flow can have speed —Gv where

1

¢ = (ZAi+Aj)_l'

i<j

In any Riemannian manifold this type of flow will preserve 2-convexity. The issue however is that this flow
is fully nonlinear. There are however some basic algebraic properties for 2-convex. Recalling that A; + Ay >0
we have

L 0< 5Z <C(n),
2. G<C(n)H,
3. G is strictly concave (the Hessian of G gives a quadratic form).

If we look at the evolution of G we have

0G oG R
E — %(DiDjG+hikhjkG+RiujuG)
ij

Note that the infimum of G is bounded below as long as ¢ is bounded. If we additionally impose the
assumption that the ambient curvature Ri313 + Ra3o3 > 0 then you can demonstrate that inf G blows up in
finite time. It is this last property that gives us finite time extinction.

Lemma 1 % is uniformly bounded below for bounded time intervals. Furthermore this implies that the flow

is uniformly parabolic.
Proof: This can be easily shown by the Maximum principle. O
Theorem 2 (Brendle, Huisken) Let M be a flow with speed G.

1. Convexity Estimate: For every 6 >0 there exists C = C(My, N, T, ) such that Ay > -0G - C.

2. Cylindrical Estimate: For every n >0 there exists § >0 and C' such that if \y <0G then this implies
that A\, — A2 < nG.

3. Inscribed Radius Bound: (Established by Langford-Andrews-McCoy) The inscribed radius is > &
where o = a( My, N, T).

4. Curvature Derivative Estimate: There erists constant A such that o®?G=2|Vh|+ a3G~3|V2h| < A.
Corollary 1 There exists a flow with finitely many surgeries in bounded time intervals.
If N satisfies that condition that Ris13 + Rago3 > 0, then the flow becomes extinct in finite time.

We shall now focus on the estimates of this theorem.

Proof: Consider the case where N = R™*!. Note that sup % is monotone decreasing, but this monotonicity
is strict unless M is a cylinder or a sphere. This can be shown by using Stampacchia iteration, which yields
that inequality



2
H < (W +5)G+C(5,T,Mo).
Note that on S ! x R we have that H = W#G. In the blow-up limit we have that H < L‘MG.
Algebraically we have Ay > 0 and A; =0 only if A; =0 for all 7 € {2,...,n}. Using this inequality, we get both
the convexity and cylindrical estimates. We now focus on the curvature derivative estimate (the inscribed
radius bound follows from the work done by Langford-Andrews-McCoy which is straightforward). This result
was shown by Brendle-White using GMT and monotonicity, along with the result by Haslhofer-Kleiner where
we take H > 0, and Huisken-Sinestravi using the maximum principle (this result requires 2-convexity). We
need another result in order to prove this last part.

Theorem 3 (Splitting Theorem) Suppose we have a smooth blow-up limit. Then this implies that Ay >0
everywhere. Furthermore, if Ay = 0 somewhere on the limit, this implies that the flow is a family of shrinking
round cylinders.

Theorem 4 Suppose we have a flow My = 0Q; with t € [-r%,0] and B,.(p) ¢ Q; for all t, and additionally
that {x —p,v(z)) > 1073y with G > BH for all x € My 0 Bo,.(p), then this implies that

r2|Vh| +r3|V2h| < A
Jor all x € My 0 Bay (p).
We now come back to the proof of curvature derivative estimate. We argue this by contradiction. Suppose
there exists (zy, 1) such that F(xy,tx) — oo and o>G|Vh|+a®G73|V2h| > A at (xy, ;). Pick points (T, tx)

such that 7, < t;. Then we have that G(Zy, ) > G(ay, 1) — oo, and therefore a?G~2|Vh|+ a|V2h| > A and
therefore

a®G|Vh|+a®|vPh| < A

for all (z,t) such that ¢ < and G(z,t) > 2G(Ty, ). Given points p,z we will let C), , be the pseudo cone
with vertex at . Here we will have that Ay < - o552 = pl.




Consider the inscribed ball at (Zy,%;) with center at pj, € R™™ and 7, = aG(Tg,tx) ", then we have two
possibilities:

o Cp o, forall t e [{ —77,1;] and for all x € Q; N By, (py) implying that the space is star-shaped
and therefore a2G~2|Vh| + a*G~3|V2h| < A at (Ty, 1)) which contradicts our assumption.

e the psuedo cone is not always contained in €2;. In this case, we look at a borderline situation where
(for some #, € [, —r7,%]) a pseudo cone is contained in Q;, and touches the boundary Mj = 0€;,
from the insite at some point yx. At the point y, we have \; (yx, 1) < _Tlooi ~ G(Ty, tx). Therefore
by the convexity estimate we have that G(yx,tr) > G(Zk, ). In particular, the curvature derivative
estimate holds at the curvature scale G(yg, ). Therefore, the Neck Detection Lemma can be applied
at yg. To summarize, near the point yi, Mj, looks like a long cylinder, and furthermore Mj, encloses

a cone with opening angle ~ ﬁ. This setup contradicts elementary geometry.



