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This is joint work with G. Huisken. We will look at n-dimensional hypersurfaces Mn ⊆ Nn+1 where we
assume that M is smooth, closed, and embedded. To fix notation we will denote the second fundamental
form as hij with eigenvalues �1 ≤ . . . ≤ �n. We will be interested in parabolic flows.

Definition 1 M is 2-convex if and only if �1 + �2 > 0.
One natural way to evolve a hypersurface is by curvature flow. The speed will be given by −H⌫ where
H = �1 + . . . + �n.

Theorem 1 (Huisken-Sinestrari) Let n ≥ 3. Assume Mn
0 ⊂ Rn+1

is 2-convex, embedded, closed, and

evolve M0 by the mean curvature flow. Then there exists a mean curvature flow with finitely many surgeries

which become extinct in finite time.

The question now becomes how we perform the surgery. Either via a neck modeled by a cylinder, or a cap.
The case for n = 2 was proven analagously by Brendle and Huisken, as well as by Haslhofer-Kleiner. What’s
interesting about the lower dimensional case is that this framework extends over to the case of hypersurfaces
in a Riemannian manifold provided either
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• the dimension of the hypersurface is 2, or

• if n ≥ 3 the space is symmetric (i.e. ∇Rm = 0).
If neither of these cases hold then 2-convexity is not preserved in higher dimensions in non-symmetric spaces.
To get around this problem, we would like to use a flow that preserves 2-convexity in the Riemannian setting.
There are a couple of di↵erent flows that can satisfy this, but they are all of the same basic type. The first
mean curvature flow can have speed −G⌫ where

G = ���i<j
1

�i + �j

�
�
−1

.

In any Riemannian manifold this type of flow will preserve 2-convexity. The issue however is that this flow
is fully nonlinear. There are however some basic algebraic properties for 2-convex. Recalling that �1 +�2 > 0
we have

1. 0 < @G
@�i
≤ C(n),

2. G ≤ C(n)H,

3. G is strictly concave (the Hessian of G gives a quadratic form).

If we look at the evolution of G we have

@G

@t
= @G

@hij
(DiDjG + hikhjkG +Ri⌫j⌫G)

Note that the infimum of G is bounded below as long as t is bounded. If we additionally impose the
assumption that the ambient curvature R1313 +R2323 ≥ 0 then you can demonstrate that infG blows up in
finite time. It is this last property that gives us finite time extinction.

Lemma 1 G
H

is uniformly bounded below for bounded time intervals. Furthermore this implies that the flow

is uniformly parabolic.

Proof : This can be easily shown by the Maximum principle. �
Theorem 2 (Brendle, Huisken) Let Mn

t be a flow with speed G.

1. Convexity Estimate: For every � > 0 there exists C = C(M0,N,T, �) such that �1 ≥ −�G −C.

2. Cylindrical Estimate: For every ⌘ > 0 there exists � > 0 and C such that if �1 ≤ �G then this implies

that �n − �2 ≤ ⌘G.

3. Inscribed Radius Bound: (Established by Langford-Andrews-McCoy) The inscribed radius is ≥ ↵
G

where ↵ = ↵(M0,N,T ).
4. Curvature Derivative Estimate: There exists constant ⇤ such that ↵2G−2�∇h� + ↵3G−3�∇2h� ≤ ⇤.

Corollary 1 There exists a flow with finitely many surgeries in bounded time intervals.

If N satisfies that condition that R1313 +R2323 ≥ 0, then the flow becomes extinct in finite time.

We shall now focus on the estimates of this theorem.

Proof : Consider the case where N = Rn+1. Note that sup H
G

is monotone decreasing, but this monotonicity
is strict unless M is a cylinder or a sphere. This can be shown by using Stampacchia iteration, which yields
that inequality
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H ≤ �(n − 1)2(n + 2)
4

+ ��G +C(�, T,M0).
Note that on Sn−1 ×R we have that H = (n−1)2(n+2)4 G. In the blow-up limit we have that H ≤ (n−1)2(n+2)4 G.
Algebraically we have �1 ≥ 0 and �1 = 0 only if �i = 0 for all i ∈ {2, . . . , n}. Using this inequality, we get both
the convexity and cylindrical estimates. We now focus on the curvature derivative estimate (the inscribed
radius bound follows from the work done by Langford-Andrews-McCoy which is straightforward). This result
was shown by Brendle-White using GMT and monotonicity, along with the result by Haslhofer-Kleiner where
we take H > 0, and Huisken-Sinestravi using the maximum principle (this result requires 2-convexity). We
need another result in order to prove this last part.

Theorem 3 (Splitting Theorem) Suppose we have a smooth blow-up limit. Then this implies that �1 ≥ 0
everywhere. Furthermore, if �1 = 0 somewhere on the limit, this implies that the flow is a family of shrinking

round cylinders.

Theorem 4 Suppose we have a flow Mt = @⌦t with t ∈ [−r2,0] and Br(p) ⊂ ⌦t for all t, and additionally

that �x − p, ⌫(x)� ≥ 10−3⌫ with G ≥ �H for all x ∈Mt ∩B2r(p), then this implies that

r2�∇h� + r3�∇2h� ≤ ⇤

for all x ∈Mt ∩B 4r
3
(p).

We now come back to the proof of curvature derivative estimate. We argue this by contradiction. Suppose
there exists (xk, tk) such that F (xk, tk)→∞ and ↵2G�∇h�+↵3G−3�∇2h� > ⇤ at (xk, tk). Pick points (xk, tk)
such that tk < tk. Then we have that G(xk, tk) > G(xk, tk)→∞, and therefore ↵2G−2�∇h� +↵3�∇2h� > ⇤ and
therefore

↵2G−2�∇h� + ↵3�∇2h� ≤ ⇤

for all (x, t) such that t ≤ tk and G(x, t) ≥ 2G(xk, tk). Given points p, x we will let Cp,x be the pseudo cone
with vertex at x. Here we will have that �1 < − 1

1000 �x − p�.
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Consider the inscribed ball at (xk, tk) with center at pk ∈ Rn+1 and rk = ↵G(xk, tk)−1, then we have two
possibilities:

• Cpk,x ⊂ ⌦t, for all t ∈ [tk − r2k, tk] and for all x ∈ ⌦t ∩B2rk(pk) implying that the space is star-shaped
and therefore ↵2G−2�∇h� + ↵3G−3�∇2h� ≤ ⇤ at (xk, tk) which contradicts our assumption.

• the psuedo cone is not always contained in ⌦t. In this case, we look at a borderline situation where
(for some t̃k ∈ [tk − r2k, tk]) a pseudo cone is contained in ⌦t̃k

and touches the boundary Mt̃k
= @⌦t̃k

from the insite at some point yk. At the point yk, we have �1(yk, t̃k) < − 1
1000

1
rk
∼ G(xk, tk). Therefore

by the convexity estimate we have that G(yk, t̃k)� G(xk, tk). In particular, the curvature derivative
estimate holds at the curvature scale G(yk, t̃k). Therefore, the Neck Detection Lemma can be applied
at yk. To summarize, near the point yk, Mt̃k

looks like a long cylinder, and furthermore Mt̃k
encloses

a cone with opening angle ∼ 1
100 . This setup contradicts elementary geometry.

�
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