Home /  Workshop /  Schedules /  Ricci flow from metrics with isolated conical singularities

Ricci flow from metrics with isolated conical singularities

Geometric Flows in Riemannian and Complex Geometry May 02, 2016 - May 06, 2016

May 02, 2016 (11:00 AM PDT - 12:00 PM PDT)
Speaker(s): Felix Schulze (University of Warwick)
Location: SLMath: Eisenbud Auditorium
Video

14495

Abstract

Let $(M,g_0)$ be a compact n-dimensional Riemannian manifold with a finite number of singular points, where at each singular point the metric is asymptotic to a cone over a compact (n-1)-dimensional manifold with curvature operator greater or equal to one. We show that there exists a smooth Ricci flow starting from such a metric with curvature decaying like C/t. The initial metric is attained in Gromov-Hausdorff distance and smoothly away from the singular points. To construct this solution, we desingularize the initial metric by glueing in expanding solitons with positive curvature operator, each asymptotic to the cone at the singular point, at a small scale s. Localizing a recent stability result of Deruelle-Lamm for such expanding solutions, we show that there exists a solution from the desingularized initial metric for a uniform time T>0, independent of the glueing scale s. The solution is then obtained by letting s->0. We also show that the so obtained limiting solution has the corresponding expanding soliton as a forward tangent flow at each initial singular point. This is joint work with P. Gianniotis

Supplements
25955?type=thumb Schulze.Notes 402 KB application/pdf Download
Video/Audio Files

14495

H.264 Video 14495.mp4 315 MB video/mp4 rtsp://videos.msri.org/14495/14495.mp4 Download
Troubles with video?

Please report video problems to itsupport@slmath.org.

See more of our Streaming videos on our main VMath Videos page.