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You have a parameterized closed curve �
t

in Rn and you flow it by normal motion by its curvature vector,
given by @�t

@t

= k
�t . There are three major conjectures which are

1. No hairs,

2. Spacetime singularity set is finite,

3. A generic flow is smooth (Huisker-Hamilton).

Some results regarding singularities are given by

1. In R2: Gage-Hamilton ’84, Grayson ’87, Angenent ’88, ’91, Angenent-Velazquez ’95

2. In Rn: Altschuler ’91, Altschuler-Grayson ’92, Deckelnick ’97, ’99, Perelman ’03, Morgan-Tian ’07.

Even if the flow is smooth for some time it eventually becomes singular. You can pass through a simple cusp
and there will be no cusp. The cusp at t = t1 can be given by

(1 + o(1)) ⇡
4

�x�
log log � 1�x�� .
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We can prove that the singular set in Rn is at most one-dimensional.

The next kind of singularity that we might have is a multi-cusp, which has two or more cusps occurring at
the same point. It’s important to establish whether or not multi-cusps exist or not.
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The other kind of danger is a singularity called a hair. What if there are only finitely many singular points
with C1 arcs in between them, but such that the curves back-tracks on itself. Grayson was able to rule out
these singularities in a special situation in R2, but it’s not clear in Rn.

Theorem 1 (Altschuler-Grayson ’92, P ’03) Given a smooth immersion �0 ∶ S1 → R3.

1. there exists a flow (�
t

)
t∈U defined C∞ on an open dense set of times U ⊆ [0, T ]. Deckelnick: you get

an improvement on this, we have that the Hausdor↵ measure H1�2([0, T ) �U) <∞,

2. this flow is unique up to reparametrization in the following sense: if

d(�
t

, �
t

) = inf{area(A) � A ∶ S1 × [0,1] annulus between �
t

, �
t

}
then this distance is non-increasing (i.e. is a contraction).

3. the flow is continuous in annular distance,

4. the area of the minimal spanning disk ↓ 0 as t ↑ T where T is the final time (we would like our function
to contract to a point, but there is the possibility of contracting to a hair).

One method to prove existence is using ramps. If you have Rn you can add one more spatial direction and
add a certain slight velocity in the curve in the extra dimension. Cycles are like ramps except that we are
adding a copy of R2. If �0 is the original curve then we define �✏

0 by
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�✏

0(a) = (�0(a), ✏eia)
where a ∈ R.
Theorem 2 Let �

t

with t ∈ U[0, T ] be a flow. Then �
t

possesses left and right limits in the uniform topology
C0(S1,Rn) for each t ∈ [0, T ].
This hinges on the fact ��

t

(a) − �
s

(a)� is controlled by �t − s� and
� b

a

�
�t

�k�2dµ
t

dt.

When you have a cusp there is a positive length that lies within the cusp. Suppose you have a sequence
of flows, and define �

i

∶= �k
i

�2dµ
�

i
t
dt → �. When you pass through a cusp you have a continuous curve no

matter what, you may only come accross discontinuities at a hair.

Definition 1 (Singular Set) Consider P
r

(x, t) = B
r

(x) × (t − r2, t + r2). We can decompose S1 × [0, T ] =
R∪H∪S, where R consists of th regular points (union of smooth immersions), where H is the past-regular

or half-regular points which are regular in P −
r

(x, t) for some value of r (up to and including time t they
look regular, but cease to behave regularly afterwards), and S represents the singular points. Nonregular

points are those in H ∪ S, which is a closed set.

Later on it turns out that H consists of hairs and S consists of cusps.

Theorem 3 The 1-dimensional parabolic Hausdor↵ measure of �
t

(H ∪ S) satisfies
H1

p

(�
t

(H ∪ S)) ≤ CL(�0)
where L(�0) is the length of the curve at t = 0. There is a subtlety here in that we are taking the image of
�
t

. Another way of saying this is that we extend �
t

along to all t ∈ [0, T ) by taking limits from the left.
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One of things the above theorem implies is Deckelnick’s result. There is however an additional spatial
localization here, which can be summarized by an ✏-regularity lemma where we have that

�
P

−
r

�k�2 ≤ ✏r

where �k� ≤ C

r

in the smaller parabolic cylinder P −
r�2.
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