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You have a parameterized closed curve v in R™ and you flow it by normal motion by its curvature vector,
given by %}t = k,,. There are three major conjectures which are

1. No hairs,
2. Spacetime singularity set is finite,
3. A generic flow is smooth (Huisker-Hamilton).
Some results regarding singularities are given by
1. In R?: Gage-Hamilton 84, Grayson ’87, Angenent ’88, 91, Angenent-Velazquez *95
2. In R™: Altschuler "91, Altschuler-Grayson 92, Deckelnick '97, '99, Perelman ’03, Morgan-Tian ’07.

Even if the flow is smooth for some time it eventually becomes singular. You can pass through a simple cusp
and there will be no cusp. The cusp at ¢ =t; can be given by

||

(1+o(1))gm.




We can prove that the singular set in R" is at most one-dimensional.

The next kind of singularity that we might have is a multi-cusp, which has two or more cusps occurring at
the same point. It’s important to establish whether or not multi-cusps exist or not.




The other kind of danger is a singularity called a hair. What if there are only finitely many singular points
with O arcs in between them, but such that the curves back-tracks on itself. Grayson was able to rule out
these singularities in a special situation in R?, but it’s not clear in R™.

Theorem 1 (Altschuler-Grayson 92, P ’03) Given a smooth immersion g : S' — R3.

1. there exists a flow (v)tev defined C*™° on an open dense set of times U ¢ [0,T]. Deckelnick: you get
an improvement on this, we have that the Hausdorff measure HY?([0,T) \ U) < oo,

2. this flow is unique up to reparametrization in the following sense: if

d(ve,0,) = inf{area(A) | A:S' x [0,1] annulus between ~;, 6}
then this distance is non-increasing (i.e. is a contraction).
3. the flow is continuous in annular distance,

4. the area of the minimal spanning disk | 0 as t 1 T where T is the final time (we would like our function
to contract to a point, but there is the possibility of contracting to a hair).

One method to prove existence is using ramps. If you have R™ you can add one more spatial direction and
add a certain slight velocity in the curve in the extra dimension. Cycles are like ramps except that we are
adding a copy of R2. If vy is the original curve then we define 5 by



Y5(a) = (yo(a),ee™™)

where a € R.

Theorem 2 Lety; witht € U[0,T] be a flow. Then v possesses left and right limits in the uniform topology
CY(SY,R™) for each t € [0,T].

This hinges on the fact |y;(a) —vs(a)| is controlled by [t — s| and
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When you have a cusp there is a positive length that lies within the cusp. Suppose you have a sequence
of flows, and define o; := |ki|2duﬂ- dt — 0. When you pass through a cusp you have a continuous curve no
matter what, you may only come accross discontinuities at a hair.

Definition 1 (Singular Set) Consider P.(z,t) = B,(x) x (t = r%,t +1?). We can decompose S' x [0,T] =
RUHUS, where R consists of th reqular points (union of smooth immersions), where H is the past-regular

or half-regular points which are regular in P (x,t) for some value of r (up to and including time t they
look regular, but cease to behave regularly afterwards), and S represents the singular points. Nonregular
points are those in H U S, which is a closed set.

Later on it turns out that H consists of hairs and S consists of cusps.
Theorem 3 The I-dimensional parabolic Hausdorff measure of v(H U S) satisfies

Hy(w(HUS)) < CL(%)

where L(7o) is the length of the curve at t =0. There is a subtlety here in that we are taking the image of
. Another way of saying this is that we extend v along to all t € [0,T) by taking limits from the left.



One of things the above theorem implies is Deckelnick’s result. There is however an additional spatial
localization here, which can be summarized by an e-regularity lemma where we have that

[f k2 < er
P

where |k| < % in the smaller parabolic cylinder P_,.



