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This talk is based on research that was conducted at a workshop last year.

Theorem 1 For all n, vo > 0 where there exists C, to such that (Mn
, g) is compact and V ol(B1(p)) > vo

for all p ∈M then we have a lower bound on the curvature operator Rm ≥ −L ≥ −1, where L > 0, hence we

have an almost non-negative curvature operator. Then the Ricci flow exists on [0, to] and Rm ≥ −CL.

Additionally we find that �Rmg(t)� ≤ C
t
.

There is an immediate corollary to this theorem.

Corollary 1 Given n and D, and there exists ✏ > 0 such that if (Mn
, g) is compact with diameter <D and

volume ≥ vo, Rm ≥ −✏, then M admits metrics with Rm ≥ 0.
A few remarks are in order:

• For n = 3, a result by Miles Simon

• The analog of the above theorem and corollary holds for almost non-negative complex curvature or
PIC I (meaning that (M,g) ×R has positive isotropic curvature).

If you have a limit of such manifolds as detailed above, you end up with a limit space with a corresponding
Ricci flow. There is a problem posed by Petumin, where given a polyhedral complex with angles ≤ 2⇡ and
codimension 2 links, does a Ricci flow come out of it? Another situation to understand when we have an
almost non-negative curvature operator. If we restrict our attention to simply connected compact manifolds,
then they only examples are torus bundles over symmetric spaces.

Proof of Corollary: Suppose that such an ✏ does not exist. Then we can find a sequence of such man-
ifolds (Mn

i gi) with Rm ≥ −1
i
. In the limit we have that (Mi, gi(t))t∈[0,t0] and obtain a limit manifold(M∞, g∞(t))t∈[0,t

o

] by a result by Hamilton. Then the limit manifold, by the theorem, has non-negative
curvature operator, which contradicts our assumption. �
Proof of Theorem: Without loss of generality let 0 < L < L0 < 1. Let (M,g) be such an initial manifold,
and define a stopping time t1 ≤ 1 as the maximal time such that V ol(Bg(t)(1, t)) ≥ v

o

2 and Rmg(t) ≥ −1. We

claim there exists a constant C1 with �Rmg(t)� ≤ C1

t
for all t ∈ [0, to], where C1 depends only on n and vo.

If we suppose otherwise, then we would find there would exist a sequence (Mi, gi) of initial manifolds and(pi, ti) such that �Rmg(t
i

)(pi)� ≥ i
t
i

. We can then rescale such that �Rm�g(t
i

)(pi)� = 1, and thus �g(ti) will
converge to an ancient solution of the Ricci flow with nonnegative curvature operator Rm ≥ 0 and enclosed
volume. Let −l(p, t) denote the smallest eigenvalue of Rmg(t)(p). Then this satisfies an evolution inequality
@l
@t
≤�l+C ��Rm�� ⋅ l. It turns out that the constant C matters quite a bit. If S is the scalar curvature then we

have that C can be taken as C = S + n2
l. If the initial manifold contains an S2 factor of constant curvature

n

2, then the evolution equation becomes simpler:

@l

@t

≤ �l + Sl.
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Now we have the initial condition that l(p,0) ≤ L, and we consider the equation @h
@t
=�h+Sh with h(p,0) = L

and l(p, t) ≤ h. Now,
h(p, t) = �

M
G(p, t, q,0)dµ(q)

whereG is the Green’s function andG(⋅, ⋅, q,0) is a solution to the evolution equation for h. Now −�qG(p, t, ⋅, ⋅) =
@G
@s
(p, t, ⋅, ⋅). The claim now is that when s < t

2 , G(p, t, q, s) ≤ C
tn�2 e

−d2
s

(p,q)
Ct, in other words it has a Gaussian

bound. �
Theorem 2 Suppose we have a sequence (Mi, gi) with diameter < D and Ricci curvature Rm ≥ −(n − 1),
and suppose that (�Mi, g̃i) of universal covers →GH Rn

. Then for all i the Ricci flow exists on [0,∞) and
lim
t→∞diam(Mi, gi(t))2��Rmg

i

(t)�� → 0.

2


